0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

TensorRT-LLM初探(一)运行llama

冬至子 来源:oldpan博客 作者:Oldpan 2023-11-16 17:39 次阅读

前文

TensorRT-LLM正式出来有半个月了,一直没有时间玩,周末趁着有时间跑一下。

之前玩内测版的时候就需要cuda-12.x,正式出来仍是需要cuda-12.x,主要是因为tensorr-llm中依赖的CUBIN(二进制代码)是基于cuda12.x编译生成的,想要跑只能更新驱动。

因此,想要快速跑TensorRT-LLM,建议直接将nvidia-driver升级到535.xxx,利用docker跑即可,省去自己折腾环境, 至于想要自定义修改源码,也在docker中搞就可以

理论上替换原始代码中的该部分就可以使用别的cuda版本了(batch manager只是不开源,和cuda版本应该没关系,主要是FMA模块,另外TensorRT-llm依赖的TensorRT有cuda11.x版本,配合inflight_batcher_llm跑的triton-inference-server也和cuda12.x没有强制依赖关系):

image.png

tensorrt-llm中预先编译好的部分

说完环境要求,开始配环境吧!

搭建运行环境以及库

首先拉取镜像,宿主机显卡驱动需要高于等于535:

docker pull nvcr.io/nvidia/tritonserver:23.10-trtllm-python-py3

这个镜像是前几天刚出的,包含了运行TensorRT-LLM的所有环境(TensorRT、mpi、nvcc、nccl库等等),省去自己配环境的烦恼。

拉下来镜像后,启动镜像:

docker run -it -d --cap-add=SYS_PTRACE --cap-add=SYS_ADMIN --security-opt seccomp=unconfined --gpus=all --shm-size=16g --privileged --ulimit memlock=-1 --name=develop nvcr.io/nvidia/tritonserver:23.10-trtllm-python-py3 bash

接下来的操作全在这个容器里。

编译tensorrt-llm

首先获取git仓库,因为这个镜像中 只有运行需要的lib ,模型还是需要自行编译的(因为依赖的TensorRT,用过trt的都知道需要构建engine),所以首先编译tensorrRT-LLM:

# TensorRT-LLM uses git-lfs, which needs to be installed in advance.
apt-get update && apt-get -y install git git-lfs

git clone https://github.com/NVIDIA/TensorRT-LLM.git
cd TensorRT-LLM
git submodule update --init --recursive
git lfs install
git lfs pull

然后进入仓库进行编译:

python3 ./scripts/build_wheel.py --trt_root /usr/local/tensorrt

一般不会有环境问题,这个docekr中已经包含了所有需要的包,执行build_wheel的时候会按照脚本中的步骤pip install一些需要的包,然后运行cmake和make编译文件:

..
adding 'tensorrt_llm/tools/plugin_gen/templates/functional.py.tpl'
adding 'tensorrt_llm/tools/plugin_gen/templates/plugin.cpp.tpl'
adding 'tensorrt_llm/tools/plugin_gen/templates/plugin.h.tpl'
adding 'tensorrt_llm/tools/plugin_gen/templates/plugin_common.cpp'
adding 'tensorrt_llm/tools/plugin_gen/templates/plugin_common.h'
adding 'tensorrt_llm/tools/plugin_gen/templates/tritonPlugins.cpp.tpl'
adding 'tensorrt_llm-0.5.0.dist-info/LICENSE'
adding 'tensorrt_llm-0.5.0.dist-info/METADATA'
adding 'tensorrt_llm-0.5.0.dist-info/WHEEL'
adding 'tensorrt_llm-0.5.0.dist-info/top_level.txt'
adding 'tensorrt_llm-0.5.0.dist-info/zip-safe'
adding 'tensorrt_llm-0.5.0.dist-info/RECORD'
removing build/bdist.linux-x86_64/wheel
Successfully built tensorrt_llm-0.5.0-py3-none-any.whl

然后pip install tensorrt_llm-0.5.0-py3-none-any.whl即可。

运行

首先编译模型,因为最近没有下载新模型,还是拿旧的llama做例子。其实吧,其他llm也一样(chatglm、qwen等等),只要trt-llm支持,编译运行方法都一样的,在hugging face下载好要测试的模型即可。

这里我执行:

python /work/code/TensorRT-LLM/examples/llama/build.py 
                --model_dir /work/models/GPT/LLAMA/llama-7b-hf   # 可以替换为你自己的llm模型
                --dtype float16 
                --remove_input_padding 
                --use_gpt_attention_plugin float16 
                --enable_context_fmha 
                --use_gemm_plugin float16 
                --use_inflight_batching   # 开启inflight batching
                --output_dir /work/trtModel/llama/1-gpu

然后就是TensorRT的编译、构建engine的过程(因为使用了plugin,编译挺快的,这里我只用了一张A4000,所以没有设置world_size,默认为1),这里有很多细节,后续会聊。

编译好engine后,会生成/work/trtModel/llama/1-gpu,后续会用到。

执行以下命令:

cd tensorrtllm_backend
mkdir triton_model_repo

# 拷贝出来模板模型文件夹
cp -r all_models/inflight_batcher_llm/* triton_model_repo/

# 将刚才生成好的`/work/trtModel/llama/1-gpu`移动到模板模型文件夹中
cp /work/trtModel/llama/1-gpu/* triton_model_repo/tensorrt_llm/1

image.png

设置好之后进入tensorrtllm_backend执行:

python3 scripts/launch_triton_server.py --world_size=1 --model_repo=triton_model_repo

顺利的话就会输出:

root@6aaab84e59c0:/work/code/tensorrtllm_backend# I1105 14:16:58.286836 2561098 pinned_memory_manager.cc:241] Pinned memory pool is created at '0x7ffb76000000' with size 268435456
I1105 14:16:58.286973 2561098 cuda_memory_manager.cc:107] CUDA memory pool is created on device 0 with size 67108864
I1105 14:16:58.288120 2561098 model_lifecycle.cc:461] loading: tensorrt_llm:1
I1105 14:16:58.288135 2561098 model_lifecycle.cc:461] loading: preprocessing:1
I1105 14:16:58.288142 2561098 model_lifecycle.cc:461] loading: postprocessing:1
[TensorRT-LLM][WARNING] max_tokens_in_paged_kv_cache is not specified, will use default value
[TensorRT-LLM][WARNING] batch_scheduler_policy parameter was not found or is invalid (must be max_utilization or guaranteed_no_evict)
[TensorRT-LLM][WARNING] kv_cache_free_gpu_mem_fraction is not specified, will use default value of 0.85 or max_tokens_in_paged_kv_cache
[TensorRT-LLM][WARNING] max_num_sequences is not specified, will be set to the TRT engine max_batch_size
[TensorRT-LLM][WARNING] enable_trt_overlap is not specified, will be set to true
[TensorRT-LLM][WARNING] [json.exception.type_error.302] type must be number, but is null
[TensorRT-LLM][WARNING] Optional value for parameter max_num_tokens will not be set.
[TensorRT-LLM][INFO] Initializing MPI with thread mode 1
I1105 14:16:58.392915 2561098 python_be.cc:2199] TRITONBACKEND_ModelInstanceInitialize: postprocessing_0_0 (CPU device 0)
I1105 14:16:58.392979 2561098 python_be.cc:2199] TRITONBACKEND_ModelInstanceInitialize: preprocessing_0_0 (CPU device 0)
[TensorRT-LLM][INFO] MPI size: 1, rank: 0
I1105 14:16:58.732165 2561098 model_lifecycle.cc:818] successfully loaded 'postprocessing'
I1105 14:16:59.383255 2561098 model_lifecycle.cc:818] successfully loaded 'preprocessing'
[TensorRT-LLM][INFO] TRTGptModel maxNumSequences: 16
[TensorRT-LLM][INFO] TRTGptModel maxBatchSize: 8
[TensorRT-LLM][INFO] TRTGptModel enableTrtOverlap: 1
[TensorRT-LLM][INFO] Loaded engine size: 12856 MiB
[TensorRT-LLM][INFO] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 13144, GPU 13111 (MiB)
[TensorRT-LLM][INFO] [MemUsageChange] Init cuDNN: CPU +2, GPU +10, now: CPU 13146, GPU 13121 (MiB)
[TensorRT-LLM][INFO] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +12852, now: CPU 0, GPU 12852 (MiB)
[TensorRT-LLM][INFO] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 13164, GPU 14363 (MiB)
[TensorRT-LLM][INFO] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 13164, GPU 14371 (MiB)
[TensorRT-LLM][INFO] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +0, now: CPU 0, GPU 12852 (MiB)
[TensorRT-LLM][INFO] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 13198, GPU 14391 (MiB)
[TensorRT-LLM][INFO] [MemUsageChange] Init cuDNN: CPU +0, GPU +10, now: CPU 13198, GPU 14401 (MiB)
[TensorRT-LLM][INFO] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +0, now: CPU 0, GPU 12852 (MiB)
[TensorRT-LLM][INFO] Using 2878 tokens in paged KV cache.
I1105 14:17:17.299293 2561098 model_lifecycle.cc:818] successfully loaded 'tensorrt_llm'
I1105 14:17:17.303661 2561098 model_lifecycle.cc:461] loading: ensemble:1
I1105 14:17:17.305897 2561098 model_lifecycle.cc:818] successfully loaded 'ensemble'
I1105 14:17:17.306051 2561098 server.cc:592] 
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I1105 14:17:17.306401 2561098 server.cc:619] 
+-------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
| Backend     | Path                                                            | Config                                                                                               |
+-------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
| tensorrtllm | /opt/tritonserver/backends/tensorrtllm/libtriton_tensorrtllm.so | {"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-com |
|             |                                                                 | pute-capability":"6.000000","default-max-batch-size":"4"}}                                           |
| python      | /opt/tritonserver/backends/python/libtriton_python.so           | {"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-com |
|             |                                                                 | pute-capability":"6.000000","shm-region-prefix-name":"prefix0_","default-max-batch-size":"4"}}       |
+-------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------+

I1105 14:17:17.307053 2561098 server.cc:662] 
+----------------+---------+--------+
| Model          | Version | Status |
+----------------+---------+--------+
| ensemble       | 1       | READY  |
| postprocessing | 1       | READY  |
| preprocessing  | 1       | READY  |
| tensorrt_llm   | 1       | READY  |
+----------------+---------+--------+

I1105 14:17:17.393318 2561098 metrics.cc:817] Collecting metrics for GPU 0: NVIDIA RTX A4000
I1105 14:17:17.393534 2561098 metrics.cc:710] Collecting CPU metrics
I1105 14:17:17.394550 2561098 tritonserver.cc:2458] 
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------+
| Option                           | Value                                                                                                                                              |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id                        | triton                                                                                                                                             |
| server_version                   | 2.39.0                                                                                                                                             |
| server_extensions                | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_ |
|                                  | memory binary_tensor_data parameters statistics trace logging                                                                                      |
| model_repository_path[0]         | /work/triton_models/inflight_batcher_llm                                                                                                           |
| model_control_mode               | MODE_NONE                                                                                                                                          |
| strict_model_config              | 1                                                                                                                                                  |
| rate_limit                       | OFF                                                                                                                                                |
| pinned_memory_pool_byte_size     | 268435456                                                                                                                                          |
| cuda_memory_pool_byte_size{0}    | 67108864                                                                                                                                           |
| min_supported_compute_capability | 6.0                                                                                                                                                |
| strict_readiness                 | 1                                                                                                                                                  |
| exit_timeout                     | 30                                                                                                                                                 |
| cache_enabled                    | 0                                                                                                                                                  |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------+

I1105 14:17:17.423479 2561098 grpc_server.cc:2513] Started GRPCInferenceService at 0.0.0.0:8001
I1105 14:17:17.424418 2561098 http_server.cc:4497] Started HTTPService at 0.0.0.0:8000

这时也就启动了triton-inference-server,后端就是TensorRT-LLM。

可以看到LLAMA-7B-FP16精度版本,占用显存为:

+---------------------------------------------------------------------------------------+
Sun Nov  5 14:20:46 2023       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.113.01             Driver Version: 535.113.01   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA RTX A4000               Off | 00000000:01:00.0 Off |                  Off |
| 41%   34C    P8              16W / 140W |  15855MiB / 16376MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
                                                                                         
+---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
+---------------------------------------------------------------------------------------+

客户端

然后我们请求一下吧,先走http接口

# 执行
curl -X POST localhost:8000/v2/models/ensemble/generate -d '{"text_input": "What is machine learning?", "max_tokens": 20, "bad_words": "", "stop_words": ""}'

# 得到返回结果
{"model_name":"ensemble","model_version":"1","sequence_end":false,"sequence_id":0,"sequence_start":false,"text_output":" ⁇  What is machine learning? Machine learning is a subfield of computer science that focuses on the development of algorithms that can learn"}

triton目前不支持SSE方法,想stream可以使用grpc协议,官方也提供了grpc的方法,首先安装triton客户端:

pip install tritonclient[all]

然后执行:

python3 inflight_batcher_llm/client/inflight_batcher_llm_client.py --request-output-len 200 --tokenizer_dir /work/models/GPT/LLAMA/llama-7b-hf --tokenizer_type llama --streaming

请求后可以看到是一个token一个token返回的,也就是我们使用chatgpt3.5时,一个字一个字蹦的意思:

... 
[29953]
[29941]
[511]
[450]
[315]
[4664]
[457]
[310]
output_ids =  [[0, 19298, 297, 6641, 29899, 23027, 3444, 29892, 1105, 7598, 16370, 408, 263, 14547, 297, 3681, 1434, 8401, 304, 4517, 297, 29871, 29896, 29947, 29946, 29955, 29889, 940, 3796, 472, 278, 23933, 5977, 322, 278, 7021, 16923, 297, 29258, 265, 1434, 8718, 670, 1914, 27144, 297, 29871, 29896, 29947, 29945, 29896, 29889, 940, 471, 263, 29323, 261, 310, 278, 671, 310, 21837, 7984, 292, 322, 471, 278, 937, 304, 671, 263, 10489, 380, 994, 29889, 940, 471, 884, 263, 410, 29880, 928, 9227, 322, 670, 8277, 5134, 450, 315, 4664, 457, 310, 3444, 313, 29896, 29947, 29945, 29896, 511, 450, 315, 4664, 457, 310, 12730, 313, 29896, 29947, 29945, 29946, 511, 450, 315, 4664, 457, 310, 13616, 313, 29896, 29947, 29945, 29945, 511, 450, 315, 4664, 457, 310, 9556, 313, 29896, 29947, 29945, 29955, 511, 450, 315, 4664, 457, 310, 17362, 313, 29896, 29947, 29945, 29947, 511, 450, 315, 4664, 457, 310, 12710, 313, 29896, 29947, 29945, 29929, 511, 450, 315, 4664, 457, 310, 14198, 653, 313, 29896, 29947, 29953, 29900, 511, 450, 315, 4664, 457, 310, 28806, 313, 29896, 29947, 29953, 29896, 511, 450, 315, 4664, 457, 310, 27440, 313, 29896, 29947, 29953, 29906, 511, 450, 315, 4664, 457, 310, 24506, 313, 29896, 29947, 29953, 29941, 511, 450, 315, 4664, 457, 310]]
Input: Born in north-east France, Soyer trained as a
Output:  chef in Paris before moving to London in 1 847. He worked at the Reform Club and the Royal Hotel in Brighton before opening his own restaurant in 1 851 . He was a pioneer of the use of steam cooking and was the first to use a gas stove. He was also a prolific writer and his books included The Cuisine of France (1 851 ), The Cuisine of Italy (1 854), The Cuisine of Spain (1 855), The Cuisine of Germany (1 857), The Cuisine of Austria (1 858), The Cuisine of Russia (1 859), The Cuisine of Hungary (1 860), The Cuisine of Switzerland (1 861 ), The Cuisine of Norway (1 862), The Cuisine of Sweden (1863), The Cuisine of

因为开了inflight batching,其实可以同时多个请求打过来,修改request_id不要一样就可以:

# user 1
python3 inflight_batcher_llm/client/inflight_batcher_llm_client.py --request-output-len 200 --tokenizer_dir /work/models/GPT/LLAMA/llama-7b-hf --tokenizer_type llama --streaming --request_id 1
# user 2
python3 inflight_batcher_llm/client/inflight_batcher_llm_client.py --request-output-len 200 --tokenizer_dir /work/models/GPT/LLAMA/llama-7b-hf --tokenizer_type llama --streaming --request_id 2

至此就快速过完整个TensorRT-LLM的运行流程。

使用建议

非常建议使用docker,人生苦短。

在我们实际使用中,vllm在batch较大的场景并不慢,利用率也能打满。TensorRT-LLM和vllm的速度在某些模型上快某些模型上慢,各有优劣。

image.png

TensorRT-LLM的特点就是借助TensorRT,TensorRT后续更新越快,支持特性越牛逼,TensorRT-LLM也就越牛逼。灵活性上,我感觉vllm和TensorRT-LLM不分上下,加上大模型的结构其实都差不多,甚至TensorRT-LLM都没有上onnx-parser,在后续更新模型上,python快速搭建模型效率也都差不了多少。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • python
    +关注

    关注

    56

    文章

    4800

    浏览量

    84821
  • GPU芯片
    +关注

    关注

    1

    文章

    303

    浏览量

    5857
  • HTTP接口
    +关注

    关注

    0

    文章

    21

    浏览量

    1815
  • ChatGPT
    +关注

    关注

    29

    文章

    1564

    浏览量

    7823
收藏 人收藏

    评论

    相关推荐

    【算能RADXA微服务器试用体验】+ GPT语音与视觉交互:1,LLM部署

    。环境变量的配置,未来在具体项目中我们会再次提到。 下面我们正式开始项目。项目从输入到输出分别涉及了语音识别,图像识别,LLM,TTS这几个与AI相关的模块。先从最核心的LLM开始。 由于LLAMA
    发表于 06-25 15:02

    Meta推出Llama 2 免费开放商业和研究机构使用

    与所有LLM样,Llama 2偶尔会产生不正确或不可用的答案,但Meta介绍Llama的论文声称,它在学术基准方面与OpenAI的GPT 3.5不相上下,如MMLU(衡量
    的头像 发表于 08-02 16:17 767次阅读
    Meta推出<b class='flag-5'>Llama</b> 2 免费开放商业和研究机构使用

    现已公开发布!欢迎使用 NVIDIA TensorRT-LLM 优化大语言模型推理

    能。该开源程序库现已作为 NVIDIA NeMo 框架的部分,在 /NVIDIA/TensorRT-LLM GitHub 资源库中免费提供。 大语言模型彻底改变了人工智能领域,并创造了与数字世界交互
    的头像 发表于 10-27 20:05 995次阅读
    现已公开发布!欢迎使用 NVIDIA <b class='flag-5'>TensorRT-LLM</b> 优化大语言模型推理

    浅析tensorrt-llm搭建运行环境以及库

    之前玩内测版的时候就需要cuda-12.x,正式出来仍是需要cuda-12.x,主要是因为tensorr-llm中依赖的CUBIN(二进制代码)是基于cuda12.x编译生成的,想要跑只能更新驱动。
    的头像 发表于 11-13 14:42 2435次阅读
    浅析<b class='flag-5'>tensorrt-llm</b>搭建<b class='flag-5'>运行</b>环境以及库

    点亮未来:TensorRT-LLM 更新加速 AI 推理性能,支持在 RTX 驱动的 Windows PC 上运行新模型

    微软 Ignite 2023 技术大会发布的新工具和资源包括 OpenAI Chat API 的 TensorRT-LLM 封装接口、RTX 驱动的性能改进 DirectML for Llama 2
    的头像 发表于 11-16 21:15 693次阅读
    点亮未来:<b class='flag-5'>TensorRT-LLM</b> 更新加速 AI 推理性能,支持在 RTX 驱动的 Windows PC 上<b class='flag-5'>运行</b>新模型

    LLaMA 2是什么?LLaMA 2背后的研究工作

    Meta 发布的 LLaMA 2,是新的 sota 开源大型语言模型 (LLM)。LLaMA 2 代表着 LLaMA 的下代版本,并且具有
    的头像 发表于 02-21 16:00 1137次阅读

    NVIDIA加速微软最新的Phi-3 Mini开源语言模型

    NVIDIA 宣布使用 NVIDIA TensorRT-LLM 加速微软最新的 Phi-3 Mini 开源语言模型。TensorRT-LLM个开源库,用于优化从 PC 到云端的 NVIDIA GPU 上
    的头像 发表于 04-28 10:36 591次阅读

    高通支持Meta Llama 3在骁龙终端上运行

    高通与Meta携手合作,共同推动Meta的Llama 3大语言模型(LLM)在骁龙驱动的各类终端设备上实现高效运行。此次合作致力于优化Llama 3在智能手机、个人电脑、VR/AR头显
    的头像 发表于 05-09 10:37 448次阅读

    Meta发布基于Code LlamaLLM编译器

    近日,科技巨头Meta在其X平台上正式宣布推出了款革命性的LLM编译器,这模型家族基于Meta Code Llama构建,并融合了先进的代码优化和编译器功能。
    的头像 发表于 06-29 17:54 1524次阅读

    魔搭社区借助NVIDIA TensorRT-LLM提升LLM推理效率

    “魔搭社区是中国最具影响力的模型开源社区,致力给开发者提供模型即服务的体验。魔搭社区利用NVIDIA TensorRT-LLM,大大提高了大语言模型的推理性能,方便了模型应用部署,提高了大模型产业应用效率,更大规模地释放大模型的应用价值。”
    的头像 发表于 08-23 15:48 471次阅读

    TensorRT-LLM低精度推理优化

    本文将分享 TensorRT-LLM 中低精度量化内容,并从精度和速度角度对比 FP8 与 INT8。首先介绍性能,包括速度和精度。其次,介绍量化工具 NVIDIA TensorRT Model
    的头像 发表于 11-19 14:29 346次阅读
    <b class='flag-5'>TensorRT-LLM</b>低精度推理优化

    使用NVIDIA TensorRT提升Llama 3.2性能

    Llama 3.2 模型集扩展了 Meta Llama 开源模型集的模型阵容,包含视觉语言模型(VLM)、小语言模型(SLM)和支持视觉的更新版 Llama Guard 模型。与 NVIDIA 加速
    的头像 发表于 11-20 09:59 257次阅读

    NVIDIA TensorRT-LLM Roadmap现已在GitHub上公开发布

    感谢众多用户及合作伙伴直以来对NVIDIA TensorRT-LLM的支持。TensorRT-LLM 的 Roadmap 现已在 GitHub 上公开发布!
    的头像 发表于 11-28 10:43 304次阅读
    NVIDIA <b class='flag-5'>TensorRT-LLM</b> Roadmap现已在GitHub上公开发布

    解锁NVIDIA TensorRT-LLM的卓越性能

    NVIDIA TensorRT-LLM个专为优化大语言模型 (LLM) 推理而设计的库。它提供了多种先进的优化技术,包括自定义 Attention Kernel、Inflight
    的头像 发表于 12-17 17:47 202次阅读

    在NVIDIA TensorRT-LLM中启用ReDrafter的些变化

    Recurrent Drafting (简称 ReDrafter) 是苹果公司为大语言模型 (LLM) 推理开发并开源的种新型推测解码技术,该技术现在可与 NVIDIA TensorRT-LLM
    的头像 发表于 12-25 17:31 187次阅读
    在NVIDIA <b class='flag-5'>TensorRT-LLM</b>中启用ReDrafter的<b class='flag-5'>一</b>些变化