0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SiC MOSFET AC BTI 可靠性研究

jf_pJlTbmA9 来源:派恩杰半导体 作者:派恩杰半导体 2023-11-30 15:56 次阅读

作为目前碳化硅MOSFET型号最丰富的国产厂商派恩杰,不仅在功率器件性能上达到国际一流厂商水平,在AC BTI可靠性上更是超越国际一流厂商。总裁黄兴博士用高性能和高可靠性的产品证明派恩杰是国产碳化硅功率器件的佼佼者,展现了超高的碳化硅设计能力和工艺水平。

背景

在功率器件半导体领域,越来越需要高频高功率耐高温的功率器件,随着时间发展,硅材料在功率器件领域已经达到了材料性能的极限,碳化硅凭借其材料的优越特性开始大放异彩,然而新材料带来的可靠性问题是急需解决的。其中AC BTI(Bias Temperature Instabilities)即交流高温偏置不稳定性是碳化硅新材料带来的一大问题。

碳化硅的生产制造具有很多挑战,比如碳化硅晶圆表面更粗糙,直径更小,硬度接近金刚石,透明度更高;比如需要开发新的制造工艺,高温掺杂激活退火、欧姆接触形成和新的界面钝化方案等。为了成功认证汽车级或工业级可靠性标准,必须了解和评估与传统硅技术不同的SiC MOSFET的新特性,并且解决此类可靠性问题。SiC 特有的挑战在某种程度上与栅极氧化物可靠性有关,(1)早期栅极氧化物击穿;(2)阈值电压不稳定性。

第一个可靠性问题可通过智能筛选、TDDB(Time-Dependent Dielectric Breakdown)试验和马拉松试验,智能筛选措施可以将SiC MOSFET降低至与Si MOSFET相同等级的低故障率,此前已通过《TDDB试验》证明派恩杰SiC MOSFET寿命远超20年,通过《马拉松试验》证明在正常运行20年的时间内派恩杰SiC MOSFET失效PPM为个位数。

第二个可靠性问题,阈值电压不稳定性,分为PBTI、NBTI和AC BTI。直流的阈值电压不稳定性即PBTI和NBTI使用传统的可靠性测试方法HTGB(High Temperature Gate Bias)即可测试,经过验证派恩杰SiC MOSFET的PBTI和NBTI可靠性达到国际一流厂商水平。而AC BTI由于业界尚未有明确的测试方法,是一项较为前沿的研究。本文讲述AC BTI测试下的阈值电压不稳定性问题。

如今SiC MOSFET已经大量在电动汽车和光伏等领域使用,说明目前的SiC MOSFET可靠性已远超十年前的水平,达到了车规级和工业级的可靠性水平。

物理机理

阈值电压不稳定性分为非本征阈值电压不稳定性和本征阈值电压不稳定性,通常与宏观缺陷或杂质无关。

非本征阈值电压不稳定性是由于离子污染物(例如钠或钾)可能在器件制造期间或在正常器件操作期间从外部进入栅极氧化物。防止移动离子进入栅氧化层或在器件加工过程中清除它们的程序对于Si MOSFET技术已经非常成熟。检测和消除的专有技术和经验可以直接应用于SiC MOSFET。

另一方面,本征阈值电压不稳定性与界面的物理性质有关,即界面态和边界陷阱的密度以及它们与半导体衬底交换电荷载流子的能力。尽管SiC是唯一拥有高质量原生氧化物的宽带隙半导体,但SiC/SiO2界面的缺陷密度比Si/SiO2界面高两个数量级左右。

这不仅是由于更宽的带隙和更窄的带隙对电介质的偏移,而且还因为空位和碳相关的点缺陷仅存在于SiC。为了钝化这些新的缺陷类型,必须开发替代的氧化后钝化方案。不同的界面特性会导致SiC MOSFET的传输特性出现新的特征。大多数这些新特性都可以通过简化的物理模型来理解,这样可以更好地理解过程相关性,并有助于正确设置和评估寿命测试的结果。

试验方法

AC BTI测试方法,功率器件DUT Vgs=-5/20V,ƒ=10k~1MHz,DS短接,DUT加热至175℃,见图1。

wKgZomVdiH-AQRX4AAD-3q5pcvg239.png

图1. 测试原理

电路采用多颗隔离驱动IC驱动多颗功率器件,需要合理Layout驱动电路,采用较短的连接线等,避免由于尖峰对器件带来的影响。在考虑以上因素后,驱动电阻设置稍大电阻值保证Vgs波形的尖峰较小,Vgs实测波形见图2。

wKgaomVdiIGAAPFtAAPYGMqcIlE545.png

图2. Vgs波形

试验方法采用MSM (Measure-Stree-Measure) 测试方法,见图3。其中Vstress time=1~200ks。

wKgZomVdiIKAHNHZAAVKZ1Gtp8c506.png

图3. MSM测试方法

由于碳化硅与二氧化硅界面缺陷密度更高,碳化硅MOSFET的Vth存在更大的瞬态漂移值,经过大量的实验验证Vth瞬态漂移值不会对电路造成太大的影响,因此需要准确测量到Vth的永久漂移值。

使用JEDEC标准JEP184中的Vth滞后方法测试,见图4。其中Vgs=20V,-Vgs=-20V,t_precon=100ms,t_float=10ms,t_meas=2.5ms。Vth值以Vth_Down为准,因为采用了预施加压力后,Vth的瞬态漂移值已消除。采用此方法进行测试,实现了可重复快速准确测试Vth值,与初始值比较可得到Vth的永久漂移值。

wKgZomVdiISAOsvYAAIZ43FOwyk986.png

图4. 滞后Vth测量方法

试验结果

试验条件:Vgs=-5/20V,DS Short,ƒ=100kHz,占空比δ=50%,T=175℃;器件1#~4#为派恩杰公司1200V80mΩ SiC MOSFET-P3M12080K3,器件5#为C公司同规格等级平面栅SiC MOSFET,器件6#为I公司同规格等级沟槽栅SiC MOSFET。试验结果Vth永久漂移值对比图见图5, Rdson变化率对比图见图6,实线圆点表示1000h数据,虚线表示外推至20年变化值。

wKgaomVdiIWAALh8AACN8bwQ7rA645.png

图5. AC BTI VTH永久漂移值对比

1000h的AC BTI试验Vth永久漂移值结果:派恩杰器件1#~4#的Vth永久漂移值均小于0.1V,C公司器件5#的Vth永久漂移值为0.1~0.3V,I公司器件6#的Vth永久漂移值为0.2~1.6V。可以看出派恩杰器件Vth永久漂移值均较小且一致性较好,优于平面栅的C公司器件。沟槽栅的I公司器件Vth永久漂移值最大,得出结论沟槽栅的SiC MOSFET功率器件Vth永久漂移值大于平面栅的SiC MOSFET。

派恩杰器件Vth永久漂移值几乎不随开关次数变大,没有明显的增长,C公司器件与I公司器件Vth永久漂移值随开关次数符合幂律关系。C公司器件Vth永久漂移值外推至20年可能会达到0.6V左右。I公司器件Vth永久漂移值外推至20年可能会达到4V左右。

wKgaomVdiIeAYS3eAACOa7rkFzs427.png

图6. AC BTI Rdson变化率对比

1000h的AC BTI试验Rdson变化率结果:派恩杰器件1#~4#的Rdson变化率均小于1%,C公司器件的Rdson变化率为0.7%~4.6%,I公司器件的Rdson变化率为2.6%~40%。可以看出派恩杰器件1#~4#的Rdson变化率均较小,且不随时间推移变化,性能稳定,几乎达到硅MOSFET可靠性水平,明显优于C公司与I公司器件可靠性水平。

派恩杰器件Rdson不随开关次数变化,C公司器件Rdson变化率外推至20年可能会达到10%左右,I公司器件Rdson变化率外推至20年可能会超过100%左右。

考虑到功率器件的实际应用工况会更加复杂,可靠性问题可能会出现更为恶劣的情况,功率器件在实际工况的参数漂移可能会更大。

应用影响

若功率器件的性能不稳定发生漂移,轻则降低转换器效率,重则导致转换器炸机。器件性能的漂移会降低器件本身的使用寿命,甚至可能会导致一些灾难性的后果。特别是在功率芯片并联领域,比如模块,芯片的参数发生漂移,可能导致并联不均流,模块更容易损坏或者寿命更短。从上述可靠性试验结果来看,派恩杰的SiC MOSFET性能是最稳定的,最适合用于并联的。

结论

作为一种更接近实际应用的可靠性测试方法,AC BTI能够更加准确的评估SiC MOSFET芯片的可靠性,是SiC MOSFET必不可少的可靠性测试项目之一。在同等试验条件下,平面栅的SiC MOSFET的AC BTI可靠性优于沟槽栅的可靠性,派恩杰SiC MOSFET的AC BTI可靠性优于国际一流厂商C公司和I公司,派恩杰的SiC MOSFET功率器件设计和工艺能力优于国际一流厂商C公司和I公司。派恩杰碳化硅MOSFET是全球碳化硅功率器件可靠性最高和性能最稳定的碳化硅功率器件之一。

wKgZomVdiIiAY4k7AADvKubGegE087.png

关于派恩杰

第三代宽禁带半导体材料前沿技术探讨交流平台,帮助工程师了解SiC/GaN全球技术发展趋势。所有内容都是SiC/GaN功率器件供应商派恩杰半导体创始人黄兴博士和派恩杰工程师原创。

黄兴博士

派恩杰 总裁 技术总监

美国北卡州立大学博士,师承Dr. B. Jayant Baliga(IEEE终身会员,美国科学院院士,IGBT发明者,奥巴马授予国家技术创新奖章)与Dr. Alex Q. Huang(IEEE Fellow, 发射极关断晶闸管(ETO)的发明者)。10余年碳化硅与氮化镓功率器件经验,在世界顶尖碳化硅实验室参与美国自然科学基金委FREEDM项目、美国能源部Power America项目,曾任职于Qorvo Inc.、联合碳化硅。2018年成立派恩杰半导体,立志于帮助中国建立成熟的功率器件产业链。

派恩杰半导体

成立于2018年9月的第三代半导体功率器件设计和方案商,国际标准委员会JC-70会议的主要成员之一,参与制定宽禁带半导体功率器件国际标准。发布了100余款650V/1200V/1700V SiC SBD、SiC MOSFET、GaN HEMT功率器件,其中SiC MOSFET芯片已大规模导入国产新能源整车厂和Tier 1,其余产品广泛用于大数据中心、超级计算与区块链5G通信基站、储能/充电桩、微型光伏、城际高速铁路和城际轨道交通、家用电器以及特高压、航空航天、工业特种电源、UPS、电机驱动等领域。

文章来源:派恩杰半导体

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IC
    IC
    +关注

    关注

    36

    文章

    6050

    浏览量

    177799
  • 功率器件
    +关注

    关注

    42

    文章

    1864

    浏览量

    91676
  • SiC
    SiC
    +关注

    关注

    30

    文章

    3082

    浏览量

    64052
  • 碳化硅
    +关注

    关注

    25

    文章

    2957

    浏览量

    49863
收藏 人收藏

    相关推荐

    SiC MOSFET 开关模块RC缓冲吸收电路的参数优化设计

    模块寿命,提高系统的经济。文献 [12] 针对 IGBT 开关模块的缓冲吸收电路进行了参数设计和研究,该电路比较复杂,文中没有给出参数选取的优化区间。由于 SiC-MOSFET开关速度更快
    发表于 04-23 11:25

    国产SiC碳化硅MOSFET厂商栅氧可靠性危机与破局分析

    国产SiC碳化硅MOSFET在充电桩和车载OBC(车载充电机)等领域出现栅氧可靠性问题后,行业面临严峻挑战。面对国产SiC碳化硅MOSFET
    的头像 发表于 04-20 13:33 112次阅读
    国产<b class='flag-5'>SiC</b>碳化硅<b class='flag-5'>MOSFET</b>厂商栅氧<b class='flag-5'>可靠性</b>危机与破局分析

    电机控制器电子器件可靠性研究

    的提高,在某些特定的武器装备上,由于武器本身需要长期处于储存备战状态,为了使武器能够在随时接到战斗命令的时候各个系统处于高可靠性的正常运行状态,需要对武器系统的储存可靠性进行研究,本文着重通过试验
    发表于 04-17 22:31

    国产SiC碳化硅MOSFET厂商绝口不提栅氧可靠性的根本原因是什么

    部分国产SiC碳化硅MOSFET厂商避谈栅氧可靠性以及TDDB(时间相关介电击穿)和HTGB(高温栅偏)报告作假的现象,反映了行业深层次的技术矛盾、市场机制失衡与监管漏洞。以下从根本原因和行业乱象
    的头像 发表于 04-07 10:38 144次阅读

    碳化硅(SiCMOSFET的栅氧可靠性成为电力电子客户应用中的核心关切点

    为什么现在越来越多的客户一看到SiC碳化硅MOSFET功率器件供应商聊的第一个话题就是碳化硅MOSFET的栅氧可靠性,碳化硅(SiC
    的头像 发表于 04-03 07:56 151次阅读
    碳化硅(<b class='flag-5'>SiC</b>)<b class='flag-5'>MOSFET</b>的栅氧<b class='flag-5'>可靠性</b>成为电力电子客户应用中的核心关切点

    从IGBT模块大规模失效爆雷看国产SiC模块可靠性实验的重要

    深度分析:从IGBT模块可靠性问题看国产SiC模块可靠性实验的重要 某厂商IGBT模块曾因可靠性问题导致国内光伏逆变器厂商损失数亿元,这一
    的头像 发表于 03-31 07:04 208次阅读

    如何测试SiC MOSFET栅氧可靠性

    MOSFET的栅氧可靠性问题一直是制约其广泛应用的关键因素之一。栅氧层的可靠性直接影响到器件的长期稳定性和使用寿命,因此,如何有效验证SiC MO
    的头像 发表于 03-24 17:43 565次阅读
    如何测试<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>栅氧<b class='flag-5'>可靠性</b>

    内置650V MOSFET的高可靠性PSR AC-DC转换器CN1812

    内置650V MOSFET的高可靠性PSR AC-DC转换器CN1812
    的头像 发表于 03-05 10:09 232次阅读
    内置650V <b class='flag-5'>MOSFET</b>的高<b class='flag-5'>可靠性</b>PSR <b class='flag-5'>AC</b>-DC转换器CN1812

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性

    具有决定性的影响。因此,深入理解栅极氧化层的特性,并掌握其可靠性测试方法,对于推动碳化硅 MOSFET的应用和发展具有重要意义。今天的“SiC科普小课堂”将聚焦于“栅极氧化层”这一新话题:“什么是栅极
    发表于 01-04 12:37

    瞻芯电子参与编制SiC MOSFET可靠性和动态开关测试标准

    日前,在第十届国际第三代半导体论坛(IFWS)上,第三代半导体产业技术创新战略联盟(CASA)发布了9项碳化硅 (SiC) MOSFET测试与可靠性标准,旨在为SiC
    的头像 发表于 11-29 13:47 821次阅读
    瞻芯电子参与编制<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>可靠性</b>和动态开关测试标准

    重磅 9项 SiC MOSFET测试与可靠性标准发布

    SiC MOSFET测试与可靠性标准。这一系列标准的发布,旨在为SiC MOSFET功率器件提供一套科学、合理的测试与评估方法,支撑产品性
    的头像 发表于 11-20 10:56 933次阅读
    重磅 9项 <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>测试与<b class='flag-5'>可靠性</b>标准发布

    瞻芯电子交付碳化硅(SiC)MOSFET逾千万颗 产品长期可靠性得到验证

    ,标志着产品的长期可靠性得到了市场验证。 SiC MOSFET作为功率变换系统的核心元器件,其性能表现影响应用系统的效率表现。而产品的长期可靠性则更为关键,它决定了应用系统的安全和稳定
    的头像 发表于 09-27 10:43 514次阅读
    瞻芯电子交付碳化硅(<b class='flag-5'>SiC</b>)<b class='flag-5'>MOSFET</b>逾千万颗 产品长期<b class='flag-5'>可靠性</b>得到验证

    内置900V~1500V MOSFET的高可靠性AC-DC电源芯片

    内置900V~1500V MOSFET的高可靠性AC-DC电源芯片
    的头像 发表于 08-08 09:50 1344次阅读
    内置900V~1500V <b class='flag-5'>MOSFET</b>的高<b class='flag-5'>可靠性</b><b class='flag-5'>AC</b>-DC电源芯片

    瞻芯电子第三代1200V 13.5mΩ SiC MOSFET通过车规级可靠性测试认证

    近日,上海瞻芯电子科技股份有限公司(简称“瞻芯电子”)基于第三代工艺平台开发的1200V 13.5mΩ SiC MOSFET产品(IV3Q12013T4Z)通过了车规级可靠性(AEC-Q101)测试
    的头像 发表于 06-24 09:13 1097次阅读
    瞻芯电子第三代1200V 13.5mΩ <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>通过车规级<b class='flag-5'>可靠性</b>测试认证

    AC/DC电源模块的可靠性设计与测试方法

    OSHIDA  AC/DC电源模块的可靠性设计与测试方法 AC/DC电源模块是一种将交流电能转换为直流电能的设备,广泛应用于各种电子设备中,如电脑、手机充电器、显示器等。由于其关系到设备的供电稳定性
    的头像 发表于 05-14 13:53 1069次阅读
    <b class='flag-5'>AC</b>/DC电源模块的<b class='flag-5'>可靠性</b>设计与测试方法