0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

PyTorch使用高频代码段分享

新机器视觉 来源:关于数据分析与可视化 2023-11-27 10:38 次阅读

本文是PyTorch常用代码段合集,涵盖基本配置、张量处理、模型定义与操作、数据处理、模型训练与测试等5个方面,还给出了多个值得注意的Tips,内容非常全面。

PyTorch最好的资料是官方文档。本文是PyTorch常用代码段,在参考资料[1](张皓:PyTorch Cookbook)的基础上做了一些修补,方便使用时查阅。

基本配置

导入包和版本查询


import torch
import torch.nn as nn
import torchvision
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())
print(torch.cuda.get_device_name(0))

可复现性

硬件设备(CPUGPU)不同时,完全的可复现性无法保证,即使随机种子相同。但是,在同一个设备上,应该保证可复现性。具体做法是,在程序开始的时候固定torch的随机种子,同时也把numpy的随机种子固定。


np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)


torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

显卡设置

如果只需要一张显卡。


# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
如果需要指定多张显卡,比如0,1号显卡。
importosos.environ['CUDA_VISIBLE_DEVICES']='0,1'

也可以在命令行运行代码时设置显卡:
CUDA_VISIBLE_DEVICES=0,1pythontrain.py

清除显存:

torch.cuda.empty_cache()

也可以使用在命令行重置GPU的指令:

nvidia-smi--gpu-reset-i[gpu_id]


张量(Tensor)处理

张量的数据类型

PyTorch有9种CPU张量类型和9种GPU张量类型。

d4701728-8c0e-11ee-939d-92fbcf53809c.png

张量基本信息

tensor = torch.randn(3,4,5)print(tensor.type()) # 数据类型print(tensor.size()) # 张量的shape,是个元组print(tensor.dim()) # 维度的数量

命名张量

张量命名是一个非常有用的方法,这样可以方便地使用维度的名字来做索引或其他操作,大大提高了可读性、易用性,防止出错。

# 在PyTorch 1.3之前,需要使用注释
# Tensor[N, C, H, W]
images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)
images.select(dim=1, index=0)


# PyTorch 1.3之后
NCHW = [‘N’, ‘C’, ‘H’, ‘W’]
images = torch.randn(32, 3, 56, 56, names=NCHW)
images.sum('C')
images.select('C', index=0)
# 也可以这么设置
tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))
# 使用align_to可以对维度方便地排序
tensor=tensor.align_to('N','C','H','W')

数据类型转换


# 设置默认类型,pytorch中的FloatTensor远远快于DoubleTensor
torch.set_default_tensor_type(torch.FloatTensor)


# 类型转换
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()

torch.Tensor与np.ndarray转换

除了CharTensor,其他所有CPU上的张量都支持转换为numpy格式然后再转换回来。


ndarray = tensor.cpu().numpy()
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.

Torch.tensor与PIL.Image转换


# pytorch中的张量默认采用[N, C, H, W]的顺序,并且数据范围在[0,1],需要进行转置和规范化
# torch.Tensor -> PIL.Image
image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor)  # Equivalently way


# PIL.Image -> torch.Tensor
path = r'./figure.jpg'
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way

np.ndarray与PIL.Image的转换


image = PIL.Image.fromarray(ndarray.astype(np.uint8))
ndarray = np.asarray(PIL.Image.open(path))

从只包含一个元素的张量中提取值

value=torch.rand(1).item()

张量形变


# 在将卷积层输入全连接层的情况下通常需要对张量做形变处理,
# 相比torch.view,torch.reshape可以自动处理输入张量不连续的情况


tensor = torch.rand(2,3,4)
shape = (6, 4)
tensor = torch.reshape(tensor, shape)

打乱顺序

tensor=tensor[torch.randperm(tensor.size(0))]#打乱第一个维度

水平翻转


# pytorch不支持tensor[::-1]这样的负步长操作,水平翻转可以通过张量索引实现
# 假设张量的维度为[N, D, H, W].


tensor = tensor[:,:,:,torch.arange(tensor.size(3) - 1, -1, -1).long()]

复制张量

# Operation                 |  New/Shared memory | Still in computation graph |
tensor.clone()            # |        New         |          Yes               |
tensor.detach()           # |      Shared        |          No                |
tensor.detach.clone()()#|New|No|

张量拼接


'''
注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,
而torch.stack会新增一维。例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量,
而torch.stack的结果是3x10x5的张量。
'''
tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)

将整数标签转为one-hot编码


# pytorch的标记默认从0开始
tensor = torch.tensor([0, 2, 1, 3])
N = tensor.size(0)
num_classes = 4
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())

得到非零元素


torch.nonzero(tensor)               # index of non-zero elements
torch.nonzero(tensor==0)            # index of zero elements
torch.nonzero(tensor).size(0)       # number of non-zero elements
torch.nonzero(tensor == 0).size(0)  # number of zero elements

判断两个张量相等


torch.allclose(tensor1, tensor2)  # float tensor
torch.equal(tensor1, tensor2)     # int tensor

张量扩展


# Expand tensor of shape 64*512 to shape 64*512*7*7.
tensor = torch.rand(64,512)
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)

矩阵乘法


# Matrix multiplcation: (m*n) * (n*p) * -> (m*p).
result = torch.mm(tensor1, tensor2)


# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)
result = torch.bmm(tensor1, tensor2)


# Element-wise multiplication.
result = tensor1 * tensor2

计算两组数据之间的两两欧式距离

利用广播机制

dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))

模型定义和操作

一个简单两层卷积网络的示例:


# convolutional neural network (2 convolutional layers)
class ConvNet(nn.Module):
    def __init__(self, num_classes=10):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7*7*32, num_classes)


    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)
        return out


model = ConvNet(num_classes).to(device)
卷积层的计算和展示可以用这个网站辅助。

双线性汇合(bilinear pooling)


X = torch.reshape(N, D, H * W)                        # Assume X has shape N*D*H*W
X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W)  # Bilinear pooling
assert X.size() == (N, D, D)
X = torch.reshape(X, (N, D * D))
X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)   # Signed-sqrt normalization
X = torch.nn.functional.normalize(X)                  # L2 normalization

多卡同步 BN(Batch normalization)

当使用 torch.nn.DataParallel 将代码运行在多张 GPU 卡上时,PyTorch 的 BN 层默认操作是各卡上数据独立地计算均值和标准差,同步 BN 使用所有卡上的数据一起计算 BN 层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。

sync_bn = torch.nn.SyncBatchNorm(num_features,

                                 eps=1e-05, 
                                 momentum=0.1, 
                                 affine=True, 
                                 track_running_stats=True)

将已有网络的所有BN层改为同步BN层


def convertBNtoSyncBN(module, process_group=None):
    '''Recursively replace all BN layers to SyncBN layer.


    Args:
        module[torch.nn.Module]. Network
    '''
    if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
        sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum, 
                                         module.affine, module.track_running_stats, process_group)
        sync_bn.running_mean = module.running_mean
        sync_bn.running_var = module.running_var
        if module.affine:
            sync_bn.weight = module.weight.clone().detach()
            sync_bn.bias = module.bias.clone().detach()
        return sync_bn
    else:
        for name, child_module in module.named_children():
            setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))
        return module

类似 BN 滑动平均

如果要实现类似 BN 滑动平均的操作,在 forward 函数中要使用原地(inplace)操作给滑动平均赋值。


class BN(torch.nn.Module)
    def __init__(self):
        ...
        self.register_buffer('running_mean', torch.zeros(num_features))


    def forward(self, X):
        ...
        self.running_mean += momentum * (current - self.running_mean)

计算模型整体参数量

num_parameters=sum(torch.numel(parameter)forparameterinmodel.parameters())


查看网络中的参数

可以通过model.state_dict()或者model.named_parameters()函数查看现在的全部可训练参数(包括通过继承得到的父类中的参数)


params = list(model.named_parameters())
(name, param) = params[28]
print(name)
print(param.grad)
print('-------------------------------------------------')
(name2, param2) = params[29]
print(name2)
print(param2.grad)
print('----------------------------------------------------')
(name1, param1) = params[30]
print(name1)
print(param1.grad)

模型可视化(使用pytorchviz)

szagoruyko/pytorchvizgithub.com

类似 Keras 的 model.summary() 输出模型信息,使用pytorch-summary。

sksq96/pytorch-summarygithub.com

模型权重初始化

注意 model.modules() 和 model.children() 的区别:model.modules() 会迭代地遍历模型的所有子层,而 model.children() 只会遍历模型下的一层。


# Common practise for initialization.
for layer in model.modules():
    if isinstance(layer, torch.nn.Conv2d):
        torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',
                                      nonlinearity='relu')
        if layer.bias is not None:
            torch.nn.init.constant_(layer.bias, val=0.0)
    elif isinstance(layer, torch.nn.BatchNorm2d):
        torch.nn.init.constant_(layer.weight, val=1.0)
        torch.nn.init.constant_(layer.bias, val=0.0)
    elif isinstance(layer, torch.nn.Linear):
        torch.nn.init.xavier_normal_(layer.weight)
        if layer.bias is not None:
            torch.nn.init.constant_(layer.bias, val=0.0)


# Initialization with given tensor.
layer.weight = torch.nn.Parameter(tensor)

提取模型中的某一层

modules()会返回模型中所有模块的迭代器,它能够访问到最内层,比如self.layer1.conv1这个模块,还有一个与它们相对应的是name_children()属性以及named_modules(),这两个不仅会返回模块的迭代器,还会返回网络层的名字。


# 取模型中的前两层
new_model = nn.Sequential(*list(model.children())[:2] 
# 如果希望提取出模型中的所有卷积层,可以像下面这样操作:
for layer in model.named_modules():
    if isinstance(layer[1],nn.Conv2d):
         conv_model.add_module(layer[0],layer[1])

部分层使用预训练模型

注意如果保存的模型是 torch.nn.DataParallel,则当前的模型也需要是:

model.load_state_dict(torch.load('model.pth'), strict=False)

将在 GPU 保存的模型加载到 CPU

model.load_state_dict(torch.load('model.pth', map_location='cpu'))

导入另一个模型的相同部分到新的模型

模型导入参数时,如果两个模型结构不一致,则直接导入参数会报错。用下面方法可以把另一个模型的相同的部分导入到新的模型中。


# model_new代表新的模型
# model_saved代表其他模型,比如用torch.load导入的已保存的模型
model_new_dict = model_new.state_dict()
model_common_dict = {k:v for k, v in model_saved.items() if k in model_new_dict.keys()}
model_new_dict.update(model_common_dict)
model_new.load_state_dict(model_new_dict)

数据处理

计算数据集的均值和标准差


import os
import cv2
import numpy as np
from torch.utils.data import Dataset
from PIL import Image


def compute_mean_and_std(dataset):
    # 输入PyTorch的dataset,输出均值和标准差
    mean_r = 0
    mean_g = 0
    mean_b = 0


    for img, _ in dataset:
        img = np.asarray(img) # change PIL Image to numpy array
        mean_b += np.mean(img[:, :, 0])
        mean_g += np.mean(img[:, :, 1])
        mean_r += np.mean(img[:, :, 2])


    mean_b /= len(dataset)
    mean_g /= len(dataset)
    mean_r /= len(dataset)


    diff_r = 0
    diff_g = 0
    diff_b = 0


    N = 0


    for img, _ in dataset:
        img = np.asarray(img)


        diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2))
        diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2))
        diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2))


        N += np.prod(img[:, :, 0].shape)


    std_b = np.sqrt(diff_b / N)
    std_g = np.sqrt(diff_g / N)
    std_r = np.sqrt(diff_r / N)


    mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0)
    std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0)
    return mean, std

得到视频数据基本信息


import cv2
video = cv2.VideoCapture(mp4_path)
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
video.release()

TSN 每段(segment)采样一帧视频


K = self._num_segments
if is_train:
    if num_frames > K:
        # Random index for each segment.
        frame_indices = torch.randint(
            high=num_frames // K, size=(K,), dtype=torch.long)
        frame_indices += num_frames // K * torch.arange(K)
    else:
        frame_indices = torch.randint(
            high=num_frames, size=(K - num_frames,), dtype=torch.long)
        frame_indices = torch.sort(torch.cat((
            torch.arange(num_frames), frame_indices)))[0]
else:
    if num_frames > K:
        # Middle index for each segment.
        frame_indices = num_frames / K // 2
        frame_indices += num_frames // K * torch.arange(K)
    else:
        frame_indices = torch.sort(torch.cat((                              
            torch.arange(num_frames), torch.arange(K - num_frames))))[0]
assert frame_indices.size() == (K,)
return [frame_indices[i] for i in range(K)]

常用训练和验证数据预处理

其中 ToTensor 操作会将 PIL.Image 或形状为 H×W×D,数值范围为 [0, 255] 的 np.ndarray 转换为形状为 D×H×W,数值范围为 [0.0, 1.0] 的 torch.Tensor。


train_transform = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(size=224,
                                             scale=(0.08, 1.0)),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                     std=(0.229, 0.224, 0.225)),
 ])
 val_transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                     std=(0.229, 0.224, 0.225)),
])

模型训练和测试

分类模型训练代码


# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)


# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i ,(images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)


        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)


        # Backward and optimizer
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


        if (i+1) % 100 == 0:
            print('Epoch: [{}/{}], Step: [{}/{}], Loss: {}'
                  .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

分类模型测试代码


# Test the model
model.eval()  # eval mode(batch norm uses moving mean/variance 
              #instead of mini-batch mean/variance)
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()


    print('Test accuracy of the model on the 10000 test images: {} %'
          .format(100 * correct / total))

自定义loss

继承torch.nn.Module类写自己的loss。


class MyLoss(torch.nn.Moudle):
    def __init__(self):
        super(MyLoss, self).__init__()


    def forward(self, x, y):
        loss = torch.mean((x - y) ** 2)
        return loss

标签平滑(label smoothing)

写一个label_smoothing.py的文件,然后在训练代码里引用,用LSR代替交叉熵损失即可。label_smoothing.py内容如下:


import torch
import torch.nn as nn

class LSR(nn.Module):


    def __init__(self, e=0.1, reduction='mean'):
        super().__init__()


        self.log_softmax = nn.LogSoftmax(dim=1)
        self.e = e
        self.reduction = reduction


    def _one_hot(self, labels, classes, value=1):
        """
            Convert labels to one hot vectors


        Args:
            labels: torch tensor in format [label1, label2, label3, ...]
            classes: int, number of classes
            value: label value in one hot vector, default to 1


        Returns:
            return one hot format labels in shape [batchsize, classes]
        """


        one_hot = torch.zeros(labels.size(0), classes)


        #labels and value_added  size must match
        labels = labels.view(labels.size(0), -1)
        value_added = torch.Tensor(labels.size(0), 1).fill_(value)


        value_added = value_added.to(labels.device)
        one_hot = one_hot.to(labels.device)


        one_hot.scatter_add_(1, labels, value_added)


        return one_hot


    def _smooth_label(self, target, length, smooth_factor):
        """convert targets to one-hot format, and smooth
        them.
        Args:
            target: target in form with [label1, label2, label_batchsize]
            length: length of one-hot format(number of classes)
            smooth_factor: smooth factor for label smooth


        Returns:
            smoothed labels in one hot format
        """
        one_hot = self._one_hot(target, length, value=1 - smooth_factor)
        one_hot += smooth_factor / (length - 1)


        return one_hot.to(target.device)


    def forward(self, x, target):


        if x.size(0) != target.size(0):
            raise ValueError('Expected input batchsize ({}) to match target batch_size({})'
                    .format(x.size(0), target.size(0)))


        if x.dim() < 2:
            raise ValueError('Expected input tensor to have least 2 dimensions(got {})'
                    .format(x.size(0)))


        if x.dim() != 2:
            raise ValueError('Only 2 dimension tensor are implemented, (got {})'
                    .format(x.size()))




        smoothed_target = self._smooth_label(target, x.size(1), self.e)
        x = self.log_softmax(x)
        loss = torch.sum(- x * smoothed_target, dim=1)


        if self.reduction == 'none':
            return loss


        elif self.reduction == 'sum':
            return torch.sum(loss)


        elif self.reduction == 'mean':
            return torch.mean(loss)


        else:
            raise ValueError('unrecognized option, expect reduction to be one of none, mean, sum')
或者直接在训练文件里做label smoothing:

for images, labels in train_loader:
    images, labels = images.cuda(), labels.cuda()
    N = labels.size(0)
    # C is the number of classes.
    smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
    smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)


    score = model(images)
    log_prob = torch.nn.functional.log_softmax(score, dim=1)
    loss = -torch.sum(log_prob * smoothed_labels) / N
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

Mixup训练


beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
for images, labels in train_loader:
    images, labels = images.cuda(), labels.cuda()


    # Mixup images and labels.
    lambda_ = beta_distribution.sample([]).item()
    index = torch.randperm(images.size(0)).cuda()
    mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]
    label_a, label_b = labels, labels[index]


    # Mixup loss.
    scores = model(mixed_images)
    loss = (lambda_ * loss_function(scores, label_a)
            + (1 - lambda_) * loss_function(scores, label_b))
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

L1 正则化


l1_regularization = torch.nn.L1Loss(reduction='sum')
loss = ...  # Standard cross-entropy loss


for param in model.parameters():
    loss += torch.sum(torch.abs(param))
loss.backward()

不对偏置项进行权重衰减(weight decay)

pytorch里的weight decay相当于l2正则:


bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
parameters = [{'parameters': bias_list, 'weight_decay': 0},                
              {'parameters': others_list}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

梯度裁剪(gradient clipping)

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)

得到当前学习率

# If there is one global learning rate (which is the common case).
lr = next(iter(optimizer.param_groups))['lr']


# If there are multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:
    all_lr.append(param_group['lr'])
另一种方法,在一个batch训练代码里,当前的lr是optimizer.param_groups[0]['lr']

学习率衰减


# Reduce learning rate when validation accuarcy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
for t in range(0, 80):
    train(...)
    val(...)
    scheduler.step(val_acc)


# Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
# Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):
    scheduler.step()    
    train(...)
    val(...)


# Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):
    scheduler.step()
    train(...)
    val(...)

优化器链式更新

从1.4版本开始,torch.optim.lr_scheduler 支持链式更新(chaining),即用户可以定义两个 schedulers,并交替在训练中使用。


import torch
from torch.optim import SGD
from torch.optim.lr_scheduler import ExponentialLR, StepLR
model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler1 = ExponentialLR(optimizer, gamma=0.9)
scheduler2 = StepLR(optimizer, step_size=3, gamma=0.1)
for epoch in range(4):
    print(epoch, scheduler2.get_last_lr()[0])
    optimizer.step()
    scheduler1.step()
    scheduler2.step()

模型训练可视化

PyTorch可以使用tensorboard来可视化训练过程。

安装和运行TensorBoard。


pip install tensorboard
tensorboard --logdir=runs

使用SummaryWriter类来收集和可视化相应的数据,放了方便查看,可以使用不同的文件夹,比如'Loss/train'和'Loss/test'。


from torch.utils.tensorboard import SummaryWriter
import numpy as np


writer = SummaryWriter()


for n_iter in range(100):
    writer.add_scalar('Loss/train', np.random.random(), n_iter)
    writer.add_scalar('Loss/test', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/test', np.random.random(), n_iter)

保存与加载断点

注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。


start_epoch = 0
# Load checkpoint.
if resume: # resume为参数,第一次训练时设为0,中断再训练时设为1
    model_path = os.path.join('model', 'best_checkpoint.pth.tar')
    assert os.path.isfile(model_path)
    checkpoint = torch.load(model_path)
    best_acc = checkpoint['best_acc']
    start_epoch = checkpoint['epoch']
    model.load_state_dict(checkpoint['model'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    print('Load checkpoint at epoch {}.'.format(start_epoch))
    print('Best accuracy so far {}.'.format(best_acc))


# Train the model
for epoch in range(start_epoch, num_epochs): 
    ... 

    # Test the model
    ...


    # save checkpoint
    is_best = current_acc > best_acc
    best_acc = max(current_acc, best_acc)
    checkpoint = {
        'best_acc': best_acc,
        'epoch': epoch + 1,
        'model': model.state_dict(),
        'optimizer': optimizer.state_dict(),
    }
    model_path = os.path.join('model', 'checkpoint.pth.tar')
    best_model_path = os.path.join('model', 'best_checkpoint.pth.tar')
    torch.save(checkpoint, model_path)
    if is_best:
        shutil.copy(model_path, best_model_path)

提取 ImageNet 预训练模型某层的卷积特征


# VGG-16 relu5-3 feature.
model = torchvision.models.vgg16(pretrained=True).features[:-1]
# VGG-16 pool5 feature.
model = torchvision.models.vgg16(pretrained=True).features
# VGG-16 fc7 feature.
model = torchvision.models.vgg16(pretrained=True)
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
# ResNet GAP feature.
model = torchvision.models.resnet18(pretrained=True)
model = torch.nn.Sequential(collections.OrderedDict(
    list(model.named_children())[:-1]))


with torch.no_grad():
    model.eval()
    conv_representation = model(image)

提取 ImageNet 预训练模型多层的卷积特征


class FeatureExtractor(torch.nn.Module):
    """Helper class to extract several convolution features from the given
    pre-trained model.


    Attributes:
        _model, torch.nn.Module.
        _layers_to_extract, list or set


    Example:
        >>> model = torchvision.models.resnet152(pretrained=True)
        >>> model = torch.nn.Sequential(collections.OrderedDict(
                list(model.named_children())[:-1]))
        >>> conv_representation = FeatureExtractor(
                pretrained_model=model,
                layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
    """
    def __init__(self, pretrained_model, layers_to_extract):
        torch.nn.Module.__init__(self)
        self._model = pretrained_model
        self._model.eval()
        self._layers_to_extract = set(layers_to_extract)


    def forward(self, x):
        with torch.no_grad():
            conv_representation = []
            for name, layer in self._model.named_children():
                x = layer(x)
                if name in self._layers_to_extract:
                    conv_representation.append(x)
            return conv_representation

微调全连接层

model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
    param.requires_grad = False
model.fc = nn.Linear(512, 100)  # Replace the last fc layer
optimizer=torch.optim.SGD(model.fc.parameters(),lr=1e-2,momentum=0.9,weight_decay=1e-4)

以较大学习率微调全连接层,较小学习率微调卷积层:


model = torchvision.models.resnet18(pretrained=True)
finetuned_parameters = list(map(id, model.fc.parameters()))
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
parameters = [{'params': conv_parameters, 'lr': 1e-3}, 
              {'params': model.fc.parameters()}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

其他注意事项

不要使用太大的线性层。因为nn.Linear(m,n)使用的是的内存,线性层太大很容易超出现有显存。

不要在太长的序列上使用RNN。因为RNN反向传播使用的是BPTT算法,其需要的内存和输入序列的长度呈线性关系。

model(x) 前用 model.train() 和 model.eval() 切换网络状态。

不需要计算梯度的代码块用 with torch.no_grad() 包含起来。

model.eval() 和 torch.no_grad() 的区别在于,model.eval() 是将网络切换为测试状态,例如 BN 和dropout在训练和测试阶段使用不同的计算方法。torch.no_grad() 是关闭 PyTorch 张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行 loss.backward()。

model.zero_grad()会把整个模型的参数的梯度都归零, 而optimizer.zero_grad()只会把传入其中的参数的梯度归零.

torch.nn.CrossEntropyLoss 的输入不需要经过 Softmax。torch.nn.CrossEntropyLoss 等价于 torch.nn.functional.log_softmax + torch.nn.NLLLoss。

loss.backward() 前用 optimizer.zero_grad() 清除累积梯度。

torch.utils.data.DataLoader 中尽量设置 pin_memory=True,对特别小的数据集如 MNIST 设置 pin_memory=False 反而更快一些。num_workers 的设置需要在实验中找到最快的取值。

用 del 及时删除不用的中间变量,节约 GPU 存储。使用 inplace 操作可节约 GPU 存储,如:

x=torch.nn.functional.relu(x,inplace=True)

减少 CPU 和 GPU 之间的数据传输。例如如果你想知道一个 epoch 中每个 mini-batch 的 loss 和准确率,先将它们累积在 GPU 中等一个 epoch 结束之后一起传输回 CPU 会比每个 mini-batch 都进行一次 GPU 到 CPU 的传输更快。

使用半精度浮点数 half() 会有一定的速度提升,具体效率依赖于 GPU 型号。需要小心数值精度过低带来的稳定性问题。

时常使用 assert tensor.size() == (N, D, H, W) 作为调试手段,确保张量维度和你设想中一致。

除了标记 y 外,尽量少使用一维张量,使用 n*1 的二维张量代替,可以避免一些意想不到的一维张量计算结果。

统计代码各部分耗时:

with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:

  ...print(profile)# 或者在命令行运行python -m torch.utils.bottleneck main.py

使用TorchSnooper来调试PyTorch代码,程序在执行的时候,就会自动 print 出来每一行的执行结果的 tensor 的形状、数据类型、设备、是否需要梯度的信息。


# pip install torchsnooper
import torchsnooper# 对于函数,使用修饰器@torchsnooper.snoop()


# 如果不是函数,使用 with 语句来激活 TorchSnooper,把训练的那个循环装进 with 语句中去。
with torchsnooper.snoop():    
  原本的代码
审核编辑:黄飞

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10855

    浏览量

    211609
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4729

    浏览量

    128901
  • 函数
    +关注

    关注

    3

    文章

    4329

    浏览量

    62576
  • 数据处理
    +关注

    关注

    0

    文章

    595

    浏览量

    28557
  • pytorch
    +关注

    关注

    2

    文章

    808

    浏览量

    13202

原文标题:PyTorch使用高频代码段集锦,建议收藏!

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    FSBL的数据代码如何连接?

    搞懂数据代码是如何被链接成一个二进制文件的,这应该是每一个ARM程序员必须搞清楚的一个事情。
    发表于 07-21 09:02 950次阅读
    FSBL的数据<b class='flag-5'>段</b>和<b class='flag-5'>代码</b><b class='flag-5'>段</b>如何连接?

    PyTorch如何入门

    PyTorch 入门实战(一)——Tensor
    发表于 06-01 09:58

    Pytorch代码移植嵌入式开发笔记,错过绝对后悔

    @[TOC]Pytorch 代码移植嵌入式开发笔记目前在做开发完成后的AI模型移植到前端的工作。 由于硬件设施简陋,需要把代码和算法翻译成基础加乘算法并输出每个环节参数。记录几点实用技巧以及项目
    发表于 11-08 08:24

    代码、数据、附加、堆栈定义

    代码:程序员在编制程序时要把存储器划分成代码用来存放程序的指令序列,代码
    发表于 06-30 10:41 9944次阅读

    Pytorch入门教程与范例

    pytorch 是一个基于 python 的深度学习库。pytorch 源码库的抽象层次少,结构清晰,代码量适中。相比于非常工程化的 tensorflow,pytorch 是一个更易入
    发表于 11-15 17:50 5407次阅读
    <b class='flag-5'>Pytorch</b>入门教程与范例

    Caffe2 和 PyTorch 代码层合并旨为提高开发效率

    按照贾扬清的说法,Facebook 去年启动 ONNX 项目并组建团队时,就已经开始推动 Caffe2 和 PyTorch代码层的合并。
    的头像 发表于 04-30 09:16 3489次阅读

    PyTorch官网教程PyTorch深度学习:60分钟快速入门中文翻译版

    PyTorch 深度学习:60分钟快速入门”为 PyTorch 官网教程,网上已经有部分翻译作品,随着PyTorch1.0 版本的公布,这个教程有较大的代码改动,本人对教程进行重新翻
    的头像 发表于 01-13 11:53 1w次阅读

    Pytorch 1.1.0,来了!

    许多用户已经转向使用标准PyTorch运算符编写自定义实现,但是这样的代码遭受高开销:大多数PyTorch操作在GPU上启动至少一个内核,并且RNN由于其重复性质通常运行许多操作。但是可以应用TorchScript来融合操作并自
    的头像 发表于 05-05 10:02 5914次阅读
    <b class='flag-5'>Pytorch</b> 1.1.0,来了!

    PyTorch 使用更轻便的深度学习框架

    它把研究代码与工程代码相分离,还将PyTorch代码结构化,更加直观的展现数据操作过程。
    的头像 发表于 08-27 15:47 1830次阅读
    让<b class='flag-5'>PyTorch</b> 使用更轻便的深度学习框架

    Pytorch 代码移植嵌入式开发笔记(更新中)

    @[TOC]Pytorch 代码移植嵌入式开发笔记目前在做开发完成后的AI模型移植到前端的工作。 由于硬件设施简陋,需要把代码和算法翻译成基础加乘算法并输出每个环节参数。记录几点实用技巧以及项目
    发表于 11-02 20:36 16次下载
    <b class='flag-5'>Pytorch</b> <b class='flag-5'>代码</b>移植嵌入式开发笔记(更新中)

    那些年在pytorch上踩过的坑

    今天又发现了一个pytorch的小坑,给大家分享一下。手上两份同一模型的代码,一份用tensorflow写的,另一份是我拿pytorch写的,模型架构一模一样,预处理数据的逻辑也一模一样,测试发现模型推理的速度也差不多。一份预处
    的头像 发表于 02-22 14:18 1060次阅读
    那些年在<b class='flag-5'>pytorch</b>上踩过的坑

    FSBL的数据代码如何连接?

    搞懂数据代码是如何被链接成一个二进制文件的,这应该是每一个ARM程序员必须搞清楚的一个事情。
    的头像 发表于 07-06 09:50 1518次阅读
    FSBL的数据<b class='flag-5'>段</b>和<b class='flag-5'>代码</b><b class='flag-5'>段</b>如何连接?

    TorchFix:基于PyTorch代码静态分析

    TorchFix是我们最近开发的一个新工具,旨在帮助PyTorch用户维护健康的代码库并遵循PyTorch的最佳实践。首先,我想要展示一些我们努力解决的问题的示例。
    的头像 发表于 12-18 15:20 1076次阅读

    pycharm如何调用pytorch

    引言 PyTorch是一个开源的机器学习库,广泛用于计算机视觉、自然语言处理等领域。PyCharm是一个流行的Python集成开发环境(IDE),提供了代码编辑、调试、测试等功能。将PyTorch
    的头像 发表于 08-01 15:41 591次阅读

    pytorch怎么在pycharm中运行

    第一部分:PyTorch和PyCharm的安装 1.1 安装PyTorch PyTorch是一个开源的机器学习库,用于构建和训练神经网络。要在PyCharm中使用PyTorch,首先需
    的头像 发表于 08-01 16:22 1385次阅读