0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于氮化镓逆变器建模损耗的原因及考虑因素

冬至子 来源:苏大轨道交通学院研究生 作者:Zhe Yang1, Paige Renn 2023-12-06 15:18 次阅读

文章摘要

本文研究了四个经常被忽略的因素对基于GaN的全桥逆变器损耗模型的影响:器件的寄生电容、时变功耗(Ploss)下的结温度(Tj )动力学、壳温度估计以及对无源元件的详细考虑。提出并实施了考虑上述因素的换流器损耗计算模型。

采用氮化镓高电子迁移率晶体管的4.5kW硬开关逆变器原型,实验证明了各因素对逆变器损耗模型的影响。在低负荷条件下,逆变器损耗模型的精度主要受无源组件的影响,而随着输出功率的增加,有源组件的热模型和损耗模型成为主要因素。

结果表明,考虑上述因素后,在重载(Po = 4.5 kW)下,计算和测量的转换器损失差异从30.6 W(28%)减少到2.5W(小于3%),而在轻负载(Po = 500 W)下,从3.9 W(28%)降低到2.6 W(16%)。此外,氮化镓器件的模拟和测量的外壳温度差在6°C以内。

主要工作与贡献

(1)基于基础的损耗模型,通过迭代壳温的方式对结果进行优化,并考虑了有源与无源组件对损耗的影响。

(2)提出基于RC网络模型的时变功率变化对各节点温度的影响。

(3)低功率下损耗模型精度主要受无源组件的影响,但随着功率的上升,有源组件的影响成为主要因素。

主要研究内容

基于器件参数表及双脉冲测试平台得到的基础损耗模型如图1所示,在此基础上提出迭代模型如图2所示,对器件的壳温值进行优化,在3次迭代内器件的壳温均趋于稳定。

随后讨论各有源无源因素对损耗分布的影响,结果如图3所示,低功率下无源组件对损耗影响较大,但随着损耗的上升,有源因素逐渐成为影响损耗的主要因素。

图片

(a) ig=20 mA时,不同漏极电流和连接温度下GIT的导通电阻

图片

(b) 在反向导通过程中,Vds和id之间的关系

图片

(c) 不同温度和漏源电压下开关损耗的曲线拟合

图1 基础损耗模型

图片

图2 迭代模型

图片

图3 各有源无源因素对损耗分布的影响

结论

本文系统地研究了逆变器损耗计算中的几个因素和考虑因素。这些因素包括寄生电容的影响、由时变功率损失引起的结温度的动力学、壳温度的估计,以及对滤波器损失的详细考虑。在低负荷和高负荷条件下,每个因素的影响都被量化了。

结果表明,在低负荷条件下,电感损耗是造成损耗差异的主要因素,而器件损耗和热模型随着负荷的增加而变得更加重要。

此外,还详细介绍了每个因素的实现,包括方程和仿真设置。提出并实现了一种计算时变功耗和结温度的方法。与基本损失模型相比,高负荷下测量和计算的损失差异从28%降低到了3%以下,低负荷下的损失差异从28%降低到了16%。

此外,氮化镓器件在测量和估计中的情况温度在6°C以内。该方法和结果使基于GaN的转换器的设计更加准确。

阅读心得

本文主要对基础损耗模型进行了一系列的优化,详细考虑了各主要影响因素在不同功率下对损耗的影响能力,且通过使用MATLABCOMSOL进行迭代,给出了一种数据分析及仿真软件相结合的处理问题的思路,这对我们接下来工作的研究方法的选用具有一定的指导意义,且详细介绍了各类损耗的权重,在器件的损耗计算方面帮助我们开拓了新思路。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 转换器
    +关注

    关注

    27

    文章

    8694

    浏览量

    147091
  • 滤波器
    +关注

    关注

    161

    文章

    7795

    浏览量

    177996
  • 氮化镓
    +关注

    关注

    59

    文章

    1628

    浏览量

    116306
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1933

    浏览量

    73288
  • 全桥逆变器
    +关注

    关注

    1

    文章

    16

    浏览量

    7016
收藏 人收藏

    评论

    相关推荐

    氮化发展评估

    的系统级解决方案,其市场潜力刚刚开始被关注。氮化如今被定位成涵盖了从无线基站到射频能量等商业射频领域的主流应用,它从一项高深的技术发展为市场的中流砥柱,这一发展历程融合了多种因素,是其一致发挥作用的结果
    发表于 08-15 17:47

    什么是氮化(GaN)?

    氮化南征北战纵横半导体市场多年,无论是吊打碳化硅,还是PK砷化氮化凭借其禁带宽度大、击穿电压高、热导率大、电子饱和漂移速度高、抗辐射
    发表于 07-31 06:53

    请问candence Spice能做氮化器件建模吗?

    candence中的Spice模型可以修改器件最基本的物理方程吗?然后提取参数想基于candence model editor进行氮化器件的建模,有可能实现吗?求教ICCAP软件呢?
    发表于 11-29 16:04

    什么是氮化技术

    尽可能提高(和降低)。氮化在任何功率级别都很关键。工程师正努力提高切换速度、效率和可靠性,同时减小尺寸、重量和元件数量。从历来经验来看,您必须至少对其中的部分因素进行权衡,但德州仪器正通过所有这些优势
    发表于 10-27 09:28

    氮化充电器

    现在越来越多充电器开始换成氮化充电器了,氮化充电器看起来很小,但是功率一般很大,可以给手机平板,甚至笔记本电脑充电。那么氮化
    发表于 09-14 08:35

    谁发明了氮化功率芯片?

    虽然低电压氮化功率芯片的学术研究,始于 2009 年左右的香港科技大学,但强大的高压氮化功率芯片平台的量产,则是由成立于 2014 年的纳微半导体最早进行研发的。纳微半导体的三位联
    发表于 06-15 15:28

    氮化功率芯片如何在高频下实现更高的效率?

    氮化为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化的典型开关频率(65kHz)相比,集成
    发表于 06-15 15:35

    什么是氮化(GaN)?

    氮化,由(原子序数 31)和氮(原子序数 7)结合而来的化合物。它是拥有稳定六边形晶体结构的宽禁带半导体材料。禁带,是指电子从原子核轨道上脱离所需要的能量,氮化
    发表于 06-15 15:41

    为什么氮化(GaN)很重要?

    氮化(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用中,传统硅器件在能量转换方面,已经达到了它的物理
    发表于 06-15 15:47

    氮化: 历史与未来

    的存在。1875年,德布瓦博德兰(Paul-Émile Lecoq de Boisbaudran)在巴黎被发现,并以他祖国法国的拉丁语 Gallia (高卢)为这种元素命名它。纯氮化的熔点只有30
    发表于 06-15 15:50

    为什么氮化比硅更好?

    ,在半桥拓扑结构中结合了频率、密度和效率优势。如有源钳位反激式、图腾柱PFC和LLC。随着从硬开关拓扑结构到软开关拓扑结构的改变,初级FET的一般损耗方程可以最小化,从而提升至10倍的高频率。 氮化功率芯片前所未有的性能表现,
    发表于 06-15 15:53

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入、电源输出” (digital in, po
    发表于 06-15 16:03

    实现更小、更轻、更平稳的电机驱动器的氮化器件

    次谐波,它降低了电机效率并同时增加传递到负载和绕组温度的振动。 氮化器件的优势 由于氮化器件具有较低的开关损耗且没有体二极管pn结,因
    发表于 06-25 13:58

    氮化芯片未来会取代硅芯片吗?

    。 与硅芯片相比: 1、氮化芯片的功率损耗是硅基芯片的四分之一 2、尺寸为硅芯片的四分之一 3、重量是硅基芯片的四分之一 4、并且比硅基解决方案更便宜 然而,虽然 GaN 似乎是一个更好的选择,但它
    发表于 08-21 17:06

    基于IGBT功率逆变器损耗建模方法

    电子资料论文:基于IGBT功率逆变器损耗建模方法
    发表于 07-06 15:14 28次下载