0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

​GaN半导体技术及其在电子领域的前景

深圳市浮思特科技有限公司 2023-12-11 16:09 次阅读

环保意识的提高与新能源电动汽车(BEVs)需求的增长,推动了对更优质、无缺陷功率半导体解决方案的研发。而宽禁带功率半导体氮化镓(GaN)和碳化硅(SiC)为此提供了全新可能。然而,如何在生产过程中满足严苛的质量要求并尽可能保证产品的100%可靠性,依然是个待解的难题。在功率集成电路IC)制造过程中,除了需兼顾产品可靠性外,降低芯片成本以吸引更多消费者购买电动汽车,也成为了当前的一大挑战。为了应对这些问题,制造商已开始从现有的150mm晶圆转向更大的200mm晶圆。

目前,GaN在智能手机的快速充电器中的应用带来的收益巨大。据Yole Développement的最新研究报告数值预测,GaN在消费者手机充电市场上占有的份额预计在2026年将达到5.97亿美元,2020-2026年CAGR达72%。最近Apple发布了其140W MagSafe充电器,引发了行业对GaN解决方案在快速充电市场的关注,预计其应用渗透率到2025年将达到52%。

当前所有GaN电源设备主要是横向的而非垂直的。当应用中需要更高的电压时,SiC可能更适合。因为,要增加击穿电压,就需要相应增加晶片尺寸和表面厚度。然而,升级技术后的应用可能性已在逐步展现。Imec和AIXTRON成功研发出在200mm QST衬底上的氮化镓缓冲层,使其可应用于1200V,并成功使击穿电压超过1800V。如果这项技术的可行性获得了证实,将会解锁在电动汽车领域利用高电压氮化镓应用的可能性。

现阶段GaN应用研发中,横向GaN HEMT的软击穿和栅极泄露电流问题依旧比较突出。这也是部分研发机构将重点放在低电流和约650伏特电压的原因。对于更高电压(> 1,200V),可能需要寻求其他新兴衬底作支持,例如SOI,QST,或者允许垂直GaN器件的整块GaN。然而,这些新衬底的供应链还处在开发阶段,成本较高且产量较低,未来普及还需时间。

在硅基底上沉积氮化镓层的过程中,由于硅和氮化镓之间的晶格和热膨胀系数不匹配,可能会在氮化镓层中产生致命的缺陷。为了减小这种不匹配的影响,这需要建立一种复杂的缓冲层和外延工艺。外延工艺的开发常与制造商的内部流程密切相关,其复杂性不言而喻。产业目前正在从传统的六英寸平台转向八英寸平台以满足价格压力和高需求量,这无疑需要更多的外延研发以确保产品的均匀性和良品率。

图片

Imec和AIXTRON的研究人员在200mm的QST衬底上成功地培育了适用于1200V应用的氮化镓缓冲层,并使硬击穿电压超过了1800V。这一成果为高电压氮化镓应用在电力电子领域打开了一道新的大门,这在之前只能通过使用碳化硅技术才能实现。

如同在大多数半导体应用中一样,当前主要的横向GaN HEMT容易发生表面击穿和栅极泄露电流,这使一些参与者将重点放在低电流和零到650伏特的电压上。关于更高电压(> 1,200V)的应用,新的衬底材料,如SOI和QST,可能具有更大的吸引力。与硅等材料相比,氮化镓在测试、检查以及可靠性方面的参考数据相对较少。然而,由于氮化镓半导体的应用已得到证实,对其在工艺过程中所需覆盖的主要难关的认识也在持续提高。测试方法也正朝着进一步的标准化发展,在未来可望对应用于更高电压场合的器件具有更好的可靠的判断能力。

当前各种氮化镓技术正在加速向200mm过渡,以期降低生产成本,使氮化镓宽禁带功率半导体技术在混合型和全电动汽车、消费电子产品、智能手机以及其他产品的制造中得到广泛应用。然而,制造者们是否能适当地降低成本,并保稳较新版本的氮化镓技术的制程稳定性,仍是一项未知挑战。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    11940

    浏览量

    230462
  • 半导体
    +关注

    关注

    334

    文章

    27006

    浏览量

    216274
  • 晶体管
    +关注

    关注

    77

    文章

    9634

    浏览量

    137845
  • 氮化镓
    +关注

    关注

    59

    文章

    1613

    浏览量

    116160
收藏 人收藏

    评论

    相关推荐

    德州仪器日本会津工厂投产GaN功率半导体

    近日,德州仪器(TI)宣布了一个重要的里程碑事件:其基于氮化镓(GaN)的功率半导体已在日本会津工厂正式投产。这一举措标志着德州仪器GaN功率半导
    的头像 发表于 10-30 17:30 380次阅读

    SiC和GaN:新一代半导体能否实现长期可靠性?

    近年来,电力电子应用中硅向碳化硅(SiC)和氮化镓(GaN)的转变越来越明显。在过去的十年中,SiC和GaN半导体成为了推动电气化和强大未来的重要力量。得益于其固有特性,宽禁带
    的头像 发表于 10-09 11:12 283次阅读
    SiC和<b class='flag-5'>GaN</b>:新一代<b class='flag-5'>半导体</b>能否实现长期可靠性?

    信越化学推出12英寸GaN晶圆,加速半导体技术创新

    日本半导体材料巨头信越化学近日宣布了一项重大技术突破,成功研发并制造出专用于氮化镓(GaN)外延生长的300毫米(即12英寸)晶圆,标志着公司高性能
    的头像 发表于 09-10 17:05 882次阅读

    氮化镓(GaN)功率半导体市场风起云涌,引领技术革新与产业升级

    自去年以来,氮化镓(GaN)功率半导体市场持续升温,成为半导体行业的焦点。英飞凌、瑞萨电子、格芯等业界巨头纷纷通过并购GaN
    的头像 发表于 08-26 16:34 451次阅读

    SK启方半导体计划年底完成650V GaN HEMT开发工作

    半导体技术的浪潮中,韩国8英寸晶圆代工厂SK启方半导体(SK keyfoundry)近日宣布了一项重大技术突破——已确保新一代功率
    的头像 发表于 06-25 10:38 503次阅读

    瑞萨电子完成对Transphorm的收购,加速GaN技术布局

    全球半导体技术竞争日益激烈的今天,瑞萨电子以其前瞻性的战略眼光和果断的行动,成功完成了对氮化镓(GaN)器件商Transphorm的收购,
    的头像 发表于 06-25 10:07 524次阅读

    瑞萨电子收购Transphorm,加速GaN功率半导体市场布局

    全球半导体解决方案的领军者瑞萨电子近日宣布,已成功完成对氮化镓(GaN)功率半导体全球供应商Transphorm, Inc.(Nasdaq:TGAN)的收购,此举标志着瑞萨
    的头像 发表于 06-22 14:08 862次阅读

    喜讯 | MDD辰达半导体荣获蓝点奖“最具投资价值奖”

    企业“新技术、新产业、新业态、新模式”方面的创新,表彰他们对电子信息产业创新发展所做出的贡献,展现其优秀企业风采,树立新时代行业标杆。 此次,获得“最具投资价值奖”是对MDD辰达半导体
    发表于 05-30 10:41

    半导体放电管TSS:原理及电子领域的应用?|深圳比创达电子EMC a

    的放大和捕获。五、半导体放电管TSS的优势和发展趋势TSS具有响应速度快、噪声低、功耗小等优势,不仅可以提高系统的性能和效率,而且可以减少系统成本和维护成本。未来,随着电子技术的不断发展,TSS更多
    发表于 03-06 10:07

    半导体放电管TSS:原理及电子领域的应用?

    半导体放电管TSS:原理及电子领域的应用?|深圳比创达电子EMC
    的头像 发表于 03-06 10:04 722次阅读
    <b class='flag-5'>半导体</b>放电管TSS:原理及<b class='flag-5'>在</b><b class='flag-5'>电子</b><b class='flag-5'>领域</b>的应用?

    半导体放电管TSS:原理及电子领域的应用?|深圳比创达电子EMC

    也会停止并恢复到初始状态。三、半导体放电管TSS电力电子领域中的应用TSS广泛应用于电力电子领域
    发表于 03-06 10:03

    安世半导体荣获双料大奖,引领氮化镓技术前沿

    近日,Nexperia(安世半导体)凭借其氮化镓(GaN)和碳化硅(SiC)领域的杰出表现,荣获两项权威大奖:“SiC年度优秀产品奖”和“中国Ga
    的头像 发表于 01-03 15:46 1031次阅读

    PFA花篮半导体行业中的应用研究

    半导体行业是现代电子信息技术的基础,随着科技的飞速发展,半导体制造技术不断进步。在这个过程中,各种新型材料和
    的头像 发表于 12-14 12:03 831次阅读

    安世半导体宣布推出新款GaN FET器件

    基础半导体器件领域的高产能生产专家 Nexperia(安世半导体)近日宣布推出新款 GaN FET 器件,该器件采用新一代高压 GaN HE
    的头像 发表于 12-13 10:38 884次阅读

    半导体为什么不叫全导体:揭秘半导体的独特性质与应用领域

    电子领域中,半导体扮演着至关重要的角色。然而,为何它们被称为“半导体”而不是“全导体”呢?本
    的头像 发表于 12-08 11:01 3144次阅读
    <b class='flag-5'>半导体</b>为什么不叫全<b class='flag-5'>导体</b>:揭秘<b class='flag-5'>半导体</b>的独特性质与应用<b class='flag-5'>领域</b>