模型介绍
EDSR模型,全称为enhanced deep super-resolution network(增强的深度学习超分辨率重建网络)。该模型可以对指定图片进行超分辨率操作,提高清晰度。
而MDSR是多尺度的超分模型,可以一次输出不同scale的图片,相比EDSR,可以在相同的性能下,减少很多的参数。
EDSR模型结构如下:
MDSR模型结构如下:
本期内容将会带领大家学习如何利用TPU-MLIR实现EDSR模型到MDSR模型的转换。
模型导出与转换
基本流程为将原项目与模型下载后导出为onnx模型。再利用TPU-MLIR工具将onnx模型转换为bmodel模型。
目录结构安排如下,其中dataset文件夹中是量化所用的DIV2K数据集,image文件夹下是测试图片,model文件夹中是待转换的onnx模型。
.
├──dataset
│├──x2
│├──x3
│└──x4
├──image
└──model
├──EDSR_x2.onnx
├──EDSR_x3.onnx
├──EDSR_x4.onnx
├──MDSR_x2.onnx
├──MDSR_x3.onnx
└──MDSR_x4.onnx
以下命令均在TPU-MLIR的docker环境内进行。
进入EDSR-transform目录
设置参数
scale=4
size=100
echoscale=${scale}size=${size}
mkdirworkspace_x${scale}&&cdworkspace_x${scale}
- 模型转换和量化
#算子转换、图优化
model_transform.py\
--model_nameEDSR_x${scale}\
--model_def../model/EDSR_x${scale}.onnx\
--input_shapes[[1,3,${size},${size}]]\
--keep_aspect_ratio\
--pixel_formatrgb\
--test_input../image/0901x${scale}.png\
--test_resultEDSR_x${scale}_outputs.npz\
--mlirEDSR_x${scale}.mlir
#建立校准表
run_calibration.pyEDSR_x${scale}.mlir\
--dataset../dataset/X${scale}\
--input_num50\
-oEDSR_x${scale}_cali_table
#多层优化和转换bmodel
##转换INT8模型
model_deploy.py\
--mlirEDSR_x${scale}.mlir\
--quantizeINT8\
--calibration_tableEDSR_x${scale}_cali_table\
--chipbm1684x\
--test_inputEDSR_x${scale}_in_f32.npz\
--test_referenceEDSR_x${scale}_outputs.npz\
--tolerance0.85,0.45\
--modelEDSR_x${scale}_1684x_int8_sym.bmodel
##转换FP16模型
model_deploy.py\
--mlirEDSR_x${scale}.mlir\
--quantizeF16\
--chipbm1684x\
--test_inputEDSR_x${scale}_in_f32.npz\
--test_referenceEDSR_x${scale}_top_outputs.npz\
--modelEDSR_x${scale}_1684x_f32_sym.bmodel
##转换FP32模型
model_deploy.py\
--mlirEDSR_x${scale}.mlir\
--quantizeF32\
--chipbm1684x\
--test_inputEDSR_x${scale}_in_f32.npz\
--test_referenceEDSR_x${scale}_top_outputs.npz\
--modelEDSR_x${scale}_1684x_f32_sym.bmodel
#将以上所有EDSR改为MDSR即可转换MDSR模型
转换结果评估
评估过程说明
- 配置好BM1684X平台,上传并解压本项目EDSR-BM1684x.zip,同时下载benchmark数据集,确保benchmark与EDSR文件夹在同一目录内。进入EDSR/python目录下,运行以下命令:
####predictonbm1684x
formodelin{EDSR,MDSR};do
forscalein{2,3,4};do
echo-------------------------------------dataset=Set14-------------scale=${scale}-------------------------------------
cmd="pythonrun_opencv_crop.py--input../../benchmark/Set14/LR_bicubic/X${scale}\
--outputresults/${model}_Set14_x${scale}_int8\
--bmodel../models/BM1684X/${model}_x${scale}/${model}_x${scale}_1684x_int8_sym.bmodel"
echo">>>Running:${cmd}"
$cmd
done
done
- 推理结果保存在EDSR/python/results中,更改不同bmodel参数以使用不同bmodel
- 评估结果方法
####安装评估模型
pipinstalllpips
评估主要代码(eval.py)如下
...
fori,srinenumerate(sr_list):
hr=Path(args.hr_path)/(sr.stem.split('x')[0]+sr.suffix)
ifnothr.exists():
logging.error(f'{sr}:{hr}doesnotexist')
hr_list.append(None)
continue
hr_list.append(hr)
sr_img=Image.open(sr).convert('RGB')
hr_img=Image.open(hr).convert('RGB')
ifhr_img.size!=sr_img.size:
logging.info(f'croppinghr_imgfrom{hr_img.size}to{sr_img.size}')
#hr_img=hr_img.resize(sr_img.size,resample=Image.Resampling.BICUBIC)
hr_img=hr_img.crop((0,0,sr_img.size[0],sr_img.size[1]))
sr_img=np.array(sr_img)
hr_img=np.array(hr_img)
lpi=calculate_lpips(sr_img,hr_img,border=args.scale)
sr_img_y=rgb2ycbcr(sr_img,only_y=True)
hr_img_y=rgb2ycbcr(hr_img,only_y=True)
#sr_img_y=sr_img
#hr_img_y=hr_img
psnr=calculate_psnr(sr_img_y,hr_img_y,border=args.scale)
ssim=calculate_ssim(sr_img_y,hr_img_y,border=args.scale)
...
####evaluateonbm1684x
scale=(234)
formodelin{EDSR,MDSR};do
foriin"${!scale[@]}";do
echo-------------scale=${scale[$i]}-----------------
cmd="pythoneval.py--hr_path../../benchmark/Set14/HR--sr_pathresults/${model}_Set14_x${scale[$i]}_int8--scale${scale[$i]}"
echo">>>Running:${cmd}"
$cmd
done
done
- 评价结果保存在results/*/result.log里
- 若是想测试自己的图片,请将图片放入image目录下然后运行以下命令,结果保存在results/image里。更改bmodel模型来更换模型与超分倍率
pythonrun_opencv_crop.py--input../image\
--outputresults/image\
--bmodel../models/BM1684X/EDSR_x2_1684x_int8_sym.bmodel
评价代码如下
pythoneval.py--sr_pathresults/image--hr_path../image--scale{sacle}
评估结果
精度测试方法
测试数据集采用Set14数据集,指标采用与原论文一致的PSNR+SSIM指标来衡量图像质量。因为我们在模型固定输入大小的情况下,对原图进行裁切,超分,拼合的形式达到动态输入的效果,所以有的精度指标在测试中不仅不会降低反而会升高。同时又由于不同放大倍数的模型输入大小和模型参数不一样,推理时间的比例也会发生变化。
fp32结果
fp32
fp16结果
fp16
int8结果
int8
精度对比
precise
性能对比
precise
结论
本次转换了EDSR和MDSR超分辨率模型,分别实现了fp32, fp16, int8多种精度模型转换, TPU-MLIR对这两个模型支持较好,转换过程中比较顺利。从最终评估结果上看,这两个超分模型对推理的数值精度不敏感,经过量化后,相关指标损失较少,甚至有些指标还会提升。另外,在BM1684X的平台上,INT8推理时间最短,故在部署时,推荐使用量化后的INT8模型部署。
-
模型
+关注
关注
1文章
3372浏览量
49316 -
TPU
+关注
关注
0文章
145浏览量
20796 -
深度学习
+关注
关注
73文章
5521浏览量
121663
发布评论请先 登录
相关推荐
调试THS8200时图像能正常输出,但是图像很模糊不清怎么样解决?
【「大模型启示录」阅读体验】+开启智能时代的新钥匙
电压无忧:380V 变 480V 变压器引领高效电能变换
![电压无忧:380V <b class='flag-5'>变</b> 480V 变压器<b class='flag-5'>引领</b>高效电能变换](https://file1.elecfans.com/web3/M00/00/E8/wKgZO2dOxpyARGN1ACUxJ8iprfs243.png)
线路在线监测装置智能图像机的核心优势是什么?
从TPU v1到Trillium TPU,苹果等科技公司使用谷歌TPU进行AI计算
基于RK3588的8K视频解码显示案例分享!引领超高清工业视频时代
【算能RADXA微服务器试用体验】+ GPT语音与视觉交互:2,图像识别
全志T527芯片详解【二】:高清图像编解码
maixcam部署yolov5s 自定义模型
GPU如何引领安防行业智能化转型?
![GPU如何<b class='flag-5'>引领</b>安防行业<b class='flag-5'>智能</b>化转型?](https://file.elecfans.com/web2/M00/4E/DC/poYBAGLCjeiALm_WAAAYmfR7Qec474.png)
超越4K的超高清体验:大屏拼接器引领视觉革命
SDI转AV转换器:实现高清与标清的无缝对接
超越4K!高清视频编码器引领的下一代视频革命
基于TPU-MLIR:详解EinSum的完整处理过程!
![基于<b class='flag-5'>TPU-MLIR</b>:详解EinSum的完整处理过程!](https://file1.elecfans.com/web2/M00/A6/4A/wKgaomUTnHiADnB2AAAtr1gPdQM010.png)
评论