0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习和迁移学习应用,识别麦田倒伏面积

juying 来源:juying 作者:juying 2023-12-12 16:14 次阅读

在小麦扬花灌浆期,土壤中的养分供应非常重要。因此,及时施肥是保证小麦生长的关键。一般来说,施肥时间应该在小麦扬花开始期时进行。一般选择氮、磷、钾等多种元素的肥料进行施用,以保证小麦的健康生长。

小麦扬花灌浆期对水分的需求量非常大,但是过量的灌溉也容易导致小麦发生根腐病或者其他水害。因此,在小麦扬花灌浆期,适当控制水分非常重要。一般来说,在小麦扬花灌浆期,应该根据实际情况,灵活掌握灌溉的时间和量,以保证小麦的生长和发育。

利用低空无人机技术,并结合深度学习语义分割模型精准提取作物倒伏区域是一种高效的倒伏灾害监测手段。在实际应用中,受田间各种客观条件(不同无人机飞行高度低于120m、多个研究区、关键生育期不同天气状况等)限制,无人机获取的图像数量仍偏少,难以满足高精度深度学习模型训练的要求。

安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心与西北农林科技大学机械电子工程学院、宿州学院信息工程学院,组成了胡根生教授团队展开了研究,旨在探索一种在作物生育期和研究区有限的情况下精准提取倒伏面积的方法。

以健康/倒伏小麦为研究对象,在其灌浆期和成熟期开展麦田图像采集工作。设置2个飞行高度(40和80m),采集并拼接获取2019、2020、2021和2023年份3个研究区的数字正射影像图;在Swin-Transformer深度学习语义分割框架基础上,分别使用40m训练集单独训练、40和80m训练集混合训练、40m训练集预训练80m训练集迁移学习等3种训练方法,获得对照模型、混合训练模型和迁移学习模型;采用对比实验比较上述3种模型分割80m高度预测集图像的精度并评估模型性能。

迁移学习模型倒伏面积提取精度最高,交并比、正确率、精确率、召回率和F1-Score共5个指标平均数分别为85.37%、94.98%、91.30%、92.52%和91.84%,高于对照组模型1.08%~3.19%,平均加权帧率达到738.35fps/m2,高于40m图像183.12fps/m2。

利用低飞行高度(40m)预训练语义分割模型,在较高飞行高度(80m)空图像做迁移学习的方法提取倒伏小麦面积是可行的,这为解决空域飞行高度限制下,较少80m及以上图像数据集无法满足语义分割模型训练的要求的问题,提供了一种有效的方法。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 无人机
    +关注

    关注

    230

    文章

    10437

    浏览量

    180446
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121162
  • 迁移学习
    +关注

    关注

    0

    文章

    74

    浏览量

    5561
收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度学习
    的头像 发表于 11-14 15:17 581次阅读

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别
    的头像 发表于 10-27 11:13 398次阅读

    AI大模型与深度学习的关系

    人类的学习过程,实现对复杂数据的学习识别。AI大模型则是指模型的参数数量巨大,需要庞大的计算资源来进行训练和推理。深度学习算法为AI大模型
    的头像 发表于 10-23 15:25 742次阅读

    基于Python的深度学习人脸识别方法

    基于Python的深度学习人脸识别方法是一个涉及多个技术领域的复杂话题,包括计算机视觉、深度学习、以及图像处理等。在这里,我将概述一个基本的
    的头像 发表于 07-14 11:52 1269次阅读

    预训练和迁移学习的区别和联系

    预训练和迁移学习深度学习和机器学习领域中的两个重要概念,它们在提高模型性能、减少训练时间和降低对数据量的需求方面发挥着关键作用。本文将从定
    的头像 发表于 07-11 10:12 1063次阅读

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随
    的头像 发表于 07-09 15:54 921次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的一个重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等领域。然而,
    的头像 发表于 07-09 10:50 732次阅读

    深度学习在视觉检测中的应用

    能力,还使得机器能够模仿人类的某些智能行为,如识别文字、图像和声音等。深度学习的引入,极大地推动了人工智能技术的发展,特别是在图像识别、自然语言处理、语音
    的头像 发表于 07-08 10:27 729次阅读

    迁移学习的基本概念和实现方法

    迁移学习(Transfer Learning)是机器学习领域中的一个重要概念,其核心思想是利用在一个任务或领域中学到的知识来加速或改进另一个相关任务或领域的学习过程。这种方法在数据稀缺
    的头像 发表于 07-04 17:30 1665次阅读

    深度学习的基本原理与核心算法

    随着大数据时代的到来,传统机器学习方法在处理复杂模式上的局限性日益凸显。深度学习(Deep Learning)作为一种新兴的人工智能技术,以其强大的非线性表达能力和自学习能力,在图像
    的头像 发表于 07-04 11:44 2056次阅读

    深度学习与卷积神经网络的应用

    随着人工智能技术的飞速发展,深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识别、语音
    的头像 发表于 07-02 18:19 912次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器学习的范畴,但
    的头像 发表于 07-01 11:40 1377次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度
    发表于 04-23 17:18 1291次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    为什么深度学习的效果更好?

    ,这些原则和进步协同作用使这些模型异常强大。本文探讨了深度学习成功背后的核心原因,包括其学习层次表示的能力、大型数据集的影响、计算能力的进步、算法创新、迁移
    的头像 发表于 03-09 08:26 624次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    什么是深度学习?机器学习深度学习的主要差异

    2016年AlphaGo 击败韩国围棋冠军李世石,在媒体报道中,曾多次提及“深度学习”这个概念。
    的头像 发表于 01-15 10:31 1077次阅读
    什么是<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的主要差异