0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳化硅的挑战与机遇

深圳市浮思特科技有限公司 2023-12-14 16:58 次阅读

在功率半导体市场上,碳化硅(SiC)正逐步获得重视,特别是在电动汽车领域,它越来越受欢迎,但由于成本过高,许多应用场景仍然乏力涉足。

我们对碳化硅的优点已经十分熟悉,但直到最近,由于它仍是一种较为特定的技术,没有受到足够的投资。随着对能适应高电压应用的芯片需求的逐渐增长,碳化硅得到了更多深入的关注。与其他可能的硅功率器件替代品相比,碳化硅享有熟悉性的优势。

碳化硅是最早被商业化的半导体之一,最早被应用于晶体收音机的检测二极管。自2008年以来,商业碳化硅结型场效应晶体管(JFETs)已经上市并在电子设备中得到广泛应用,特别是在极端环境下。2011年,碳化硅金属氧化物半导体场效应晶体管(MOSFETs)也开始商业化。这种材料提供了中等的带隙,其击穿电压是硅的10倍。

然而,碳化硅颇难制造。日立能源全球产品管理副总裁Tobias Keller解释,标准的Czochralski (CZ)生长方法是不可行的。CZ生长法在1500°C左右将硅融化在硅耳坩埚内,但碳化硅的熔点超过2700°C。

一般来说,碳化硅晶体通过Lely方法生长。在氩气环境中,将碳化硅粉末加热到2500°C以上,在种晶上进行升华。这种方法生产的结果是可行的,但是层叠错位和其他缺陷导致它缺陷重重且难以控制。工程师在检查来料的碳化硅的晶圆时,显而易见,由于堆叠错位和其他缺陷,找出很多“死区”。碳化硅器件是在定制的外延器件层上进行优化以适应预期的工作电压的。较厚的表皮层可以承受更高的电压,但也会有更多的缺陷。

碳化硅MOSFETs还受到氧化物/碳化物表面通常质量较差的限制。来自日本京都和大阪大学的研究员T. Kimoto及其同事在去年12月份的IEEE电子器件会议(IEDM)上提出,表面产生碳-碳缺陷是由于碳化硅的直接氧化造成的。这些缺陷位置靠近碳化硅的导带边缘,它们增加了导通通道电阻,导致设备中阈值电压的漂移。

作为避免碳化硅氧化的方法,Kimoto的团队首先用氢等离子体蚀刻了表面,然后通过化学气相沉积法(CVD)沉积二氧化硅,并对接面进行氮化。这个过程降低了缺陷密度,并将电子迁移率提高了一倍以上,在10V的栅偏压下达到80 cm2/V-sec。

日立能源(前ABB半导体)的Stephan Wirths和他的同事演示了一个未命名的高介电常数化合物,它能与碳化硅形成低缺陷表面, 不需要SiO2必需的钝化步骤。正如在硅器件中一样,对碳化硅金属氧化物半导体场效应管使用高介电常数介质也会增加在给定电容下的物理厚度,从而减少漏电流。


图片

碳化硅的载流子迁移率较低,这给设备设计师带来了一个新的挑战。即使经过几十年的优化,通过改进介质的载流子迁移率表现最好的碳化硅产品迁移率仍然比硅少10倍。因此,相关通道电阻较硅高出10倍。

对于功率器件,低迁移率限制了其性能和耐久性。器件的电阻和开关损失直接影响电动汽车的续航等参数。尽管植入型掺杂剂和器件结构的改进可以降低通道电阻,但如Sonrisa Research的总裁James Cooper所指出,这同时也导致了电流密度增加并降低短路耐受时间。

短路耐受时间是衡量功率器件安全性的重要参数。如果设备因故发生短路,那么它需要拥有足够的寿命以保证保护电路反应。失败可能会对电负载产生永久性损坏,甚至可能导致用户受伤、火灾和财产损失。对于具体要求,依赖于保护电路的设计,但通常时间在5到10微秒之间。随着电流密度的增加,短路状态下的温度也会随之升高,而耐久时间则会减少。

相比于同等评级的硅器件,碳化硅MOSFET的市场接受度较低,这部分原因是这些设备往往具有较短的耐受时间。因此,设计者们期望改变通道电阻和电流密度之间的关系。我们是否有办法降低电阻,而不将电流密度提高到危险的水平呢?


图片

可能的解决方案是降低电极偏压并减小氧化物厚度。Cooper解释道,薄氧化物提高了对通道的控制——要知道在硅MOSFET中就运行在低电压下。这种解决方案需要对制造过程进行微调。虽然关于薄介质碳化硅器件的研究较少,但硅器件使用的氧化物厚度薄达到5nm,且没有引发过多的隧道效应。如上所述,使用高介电常数适宜可以在保持物理厚度的同时提供更好的通道控制。

SUNY理工学院的Dongyoung Kim和Woongje Sung提出了另一种解决方案,他们尝试通过增加有效通道宽度来降低电流密度。他们沿 SiC晶格方向使用离子引导,以4°的倾斜角植入深P井。这种方法只需要微小的改动即可应用于制造过程中,因为深井掺杂和常规井使用的掩蔽材料相同。最终所得的器件可以减小最大漏电流约2.7倍,同时将耐受时间提高了4倍。

针对类似的问题,工业则转向了如今无所不在的FinFET。通过在特定电流下增加通道面积,可以降低电流密度。普渡大学的研究人员展示了一个具有多个亚微米fin的碳化硅三栅金属氧化物半导体场效应管,并实现了对特定通道电阻的3.6倍降低。

虽然目前还不清楚功率设备行业会以多快的速度采纳像FinFET这样的颠覆性架构,但碳化硅的高击穿电压无疑是一大吸引力。希望实现这一优势的制造商需要找到解决低迁移率和高电流密度问题的办法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    11937

    浏览量

    230383
  • 功率半导体
    +关注

    关注

    22

    文章

    1130

    浏览量

    42874
  • 碳化硅
    +关注

    关注

    25

    文章

    2691

    浏览量

    48873
收藏 人收藏

    评论

    相关推荐

    碳化硅功率器件的工作原理和应用

    碳化硅(SiC)功率器件近年来在电力电子领域取得了显著的关注和发展。相比传统的硅(Si)基功率器件,碳化硅具有许多独特的优点,使其在高效能、高频率和高温环境下的应用中具有明显的优势。本文将探讨碳化硅功率器件的原理、优势、应用及其
    的头像 发表于 09-13 11:00 440次阅读
    <b class='flag-5'>碳化硅</b>功率器件的工作原理和应用

    碳化硅功率器件的优点和应用

    碳化硅(SiliconCarbide,简称SiC)功率器件是近年来电力电子领域的一项革命性技术。与传统的硅基功率器件相比,碳化硅功率器件在性能和效率方面具有显著优势。本文将深入探讨碳化硅功率器件的基本原理、优点、应用领域及其发展
    的头像 发表于 09-11 10:44 409次阅读
    <b class='flag-5'>碳化硅</b>功率器件的优点和应用

    碳化硅MOS在直流充电桩上的应用

    MOS碳化硅
    瑞森半导体
    发布于 :2024年04月19日 13:59:52

    碳化硅压敏电阻 - 氧化锌 MOV

    碳化硅圆盘压敏电阻 |碳化硅棒和管压敏电阻 | MOV / 氧化锌 (ZnO) 压敏电阻 |带引线的碳化硅压敏电阻 | 硅金属陶瓷复合电阻器 |ZnO 块压敏电阻 关于EAK碳化硅压敏
    发表于 03-08 08:37

    碳化硅产业链图谱

    共读好书 碳化硅产业链主要由衬底、外延、器件、应用等环节组成。碳化硅晶片作为半导体衬底材料,根据电阻率不同可分为导电型、半绝缘型。导电型衬底可用于生长碳化硅外延片,制成耐高温、耐高压的碳化硅
    的头像 发表于 01-17 17:55 585次阅读
    <b class='flag-5'>碳化硅</b>产业链图谱

    碳化硅特色工艺模块简介

    碳化硅(SiC)是一种宽禁带半导体材料,具有高热导率、高击穿场强、高饱和电子漂移速率和高键合能等优点。由于这些优异的性能,碳化硅在电力电子、微波射频、光电子等领域具有广泛的应用前景。然而,由于碳化硅
    的头像 发表于 01-11 17:33 805次阅读
    <b class='flag-5'>碳化硅</b>特色工艺模块简介

    碳化硅逆变器是什么 功能介绍

    碳化硅逆变器是一种基于碳化硅(SiC)半导体材料的功率电子设备,主要用于将直流电转换为交流电。与传统的硅基功率器件相比,碳化硅逆变器具有许多优越性能,如更高的开关频率、更低的导通损耗、更高的工作温度
    的头像 发表于 01-10 13:55 1496次阅读

    碳化硅的特性、应用及动态测试

    SiC是碳化硅的缩写。它是一种由硅原子和碳原子组成的化合物。碳化硅以其优异的性能著称,是一种用途广泛的材料。
    的头像 发表于 01-09 09:41 917次阅读

    碳化硅功率器件简介、优势和应用

    碳化硅(SiC)是一种优良的宽禁带半导体材料,具有高击穿电场、高热导率、低介电常数等特点,因此在高温、高频、大功率应用领域具有显著优势。碳化硅功率器件是利用碳化硅材料制成的电力电子器件,主要包括
    的头像 发表于 01-09 09:26 2733次阅读

    碳化硅功率器件的原理和应用

    随着科技的快速发展,碳化硅(SiC)功率器件作为一种先进的电力电子设备,已经广泛应用于能源转换、电机控制、电网保护等多个领域。本文将详细介绍碳化硅功率器件的原理、应用、技术挑战以及未来发展趋势。
    的头像 发表于 12-16 10:29 1230次阅读

    碳化硅的5大优势

    碳化硅(SiC),又名碳化硅,是一种硅和碳化合物。其材料特性使SiC器件具有高阻断电压能力和低比导通电阻。
    的头像 发表于 12-12 09:47 1681次阅读
    <b class='flag-5'>碳化硅</b>的5大优势

    碳化硅和igbt的区别

    碳化硅和igbt的区别  碳化硅(SiC)和绝缘栅双极型晶体管(IGBT)都是在电子领域中常见的器件。虽然它们都用于功率电子应用,但在结构、材料、性能和应用方面存在一些显著差异。本文将详细介绍碳化硅
    的头像 发表于 12-08 11:35 5592次阅读

    碳化硅是如何制造的?碳化硅的优点和应用

    碳化硅,又称SiC,是一种由纯硅和纯碳组成的半导体基材。您可以将SiC与氮或磷掺杂以形成n型半导体,或将其与铍、硼、铝或镓掺杂以形成p型半导体。虽然碳化硅的品种和纯度很多,但半导体级质量的碳化硅只是在过去几十年中才浮出水面。
    的头像 发表于 12-08 09:49 1653次阅读

    碳化硅器件介绍与仿真

    本推文主要介碳化硅器件,想要入门碳化硅器件的同学可以学习了解。
    的头像 发表于 11-27 17:48 1634次阅读
    <b class='flag-5'>碳化硅</b>器件介绍与仿真