前言
Hello大家好,今天给大家分享一下如何基于YOLOv8姿态评估模型,实现在自定义数据集上,完成自定义姿态评估模型的训练与推理。
01tiger-pose数据集
YOLOv8官方提供了一个自定义tiger-pose数据集(老虎姿态评估),总计数据有263张图像、其中210张作为训练集、53张作为验证集。
其中YOLOv8-pose的数据格式如下:
解释一下:
Class-index 表示对象类型索引,从0开始 后面的四个分别是对象的中心位置与宽高 xc、yc、width、height px1,py1表示第一个关键点坐标、p1v表示师傅可见,默认填2即可。 kpt_shape=12x2表示有12个关键点,每个关键点是x,y
02模型训练
跟训练YOLOv8对象检测模型类似,直接运行下面的命令行即可:
yolotrainmodel=yolov8n-pose.ptdata=tiger_pose_dataset.yamlepochs=100imgsz=640batch=1
03模型导出预测
训练完成以后模型预测推理测试 使用下面的命令行:
yolo predict model=tiger_pose_best.pt source=D:/123.jpg
导出模型为ONNX格式,使用下面命令行即可
yolo export model=tiger_pose_best.pt format=onnx
04部署推理
基于ONNX格式模型,采用ONNXRUNTIME推理结果如下:
ORT相关的推理演示代码如下:
def ort_pose_demo(): # initialize the onnxruntime session by loading model in CUDA support model_dir = "tiger_pose_best.onnx" session = onnxruntime.InferenceSession(model_dir, providers=['CUDAExecutionProvider']) # 就改这里, 把RTSP的地址配到这边就好啦,然后直接运行,其它任何地方都不准改! # 切记把 yolov8-pose.onnx文件放到跟这个python文件同一个文件夹中! frame = cv.imread("D:/123.jpg") bgr = format_yolov8(frame) fh, fw, fc = frame.shape start = time.time() image = cv.dnn.blobFromImage(bgr, 1 / 255.0, (640, 640), swapRB=True, crop=False) # onnxruntime inference ort_inputs = {session.get_inputs()[0].name: image} res = session.run(None, ort_inputs)[0] # matrix transpose from 1x8x8400 => 8400x8 out_prob = np.squeeze(res, 0).T result_kypts, confidences, boxes = wrap_detection(bgr, out_prob) for (kpts, confidence, box) in zip(result_kypts, confidences, boxes): cv.rectangle(frame, box, (0, 0, 255), 2) cv.rectangle(frame, (box[0], box[1] - 20), (box[0] + box[2], box[1]), (0, 255, 255), -1) cv.putText(frame, ("%.2f" % confidence), (box[0], box[1] - 10), cv.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 0)) cv.circle(frame, (int(kpts[0]), int(kpts[1])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[2]), int(kpts[3])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[4]), int(kpts[5])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[6]), int(kpts[7])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[8]), int(kpts[9])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[10]), int(kpts[11])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[12]), int(kpts[13])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[14]), int(kpts[15])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[16]), int(kpts[17])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[18]), int(kpts[19])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[20]), int(kpts[21])), 3, (255, 0, 255), 4, 8, 0) cv.circle(frame, (int(kpts[22]), int(kpts[23])), 3, (255, 0, 255), 4, 8, 0) cv.imshow("Tiger Pose Demo - gloomyfish", frame) cv.waitKey(0) cv.destroyAllWindows()
审核编辑:汤梓红
-
模型
+关注
关注
1文章
3247浏览量
48854 -
数据集
+关注
关注
4文章
1208浏览量
24710 -
命令行
+关注
关注
0文章
77浏览量
10396
原文标题:【YOLOv8】自定义姿态评估模型训练
文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论