2023年12月,日本Novel Crystal Technology宣布采用垂直布里奇曼(VB)法成功制备出直径6英寸的β型氧化镓(β-Ga2O3)单晶。通过增加单晶衬底的直径和质量,可以降低β-Ga2O3功率器件的成本。
SiC(碳化硅)和GaN(氮化镓)作为功率器件材料而备受关注。β-Ga2O3具有比这些材料更大的带隙能量。因此,很有可能为电动汽车、铁路车辆和工业设备等设备实现更高性能的功率器件。
Novel Crystal Technology 此前已开发出采用 EFG(边缘定义薄膜生长)方法的单晶制造技术。我们已经开发了 2 英寸和 100 毫米基板,并将其出售用于研究和开发目的。然而,为了广泛普β-Ga2O3功率器件,降低成本至关重要,因此我们决定致力于增加单晶衬底的直径。
采用VB法生长β-Ga2O3单晶的技术由信州大学发明,目前已生产出2英寸和4英寸的单晶。Novel Crystal Technology继承了信州大学的培育技术,决定制造大直径、高品质的β-Ga2O3基板。
VB法是将装有原料的坩埚存放在具有温度梯度的炉子中,待原料熔化后,将坩埚拉起并凝固的生长方法。因此,获得与坩埚形状相同的晶体。由于熔体在坩埚中凝固,因此还具有能够生产多种表面取向的基材的优点。此外,由于它可以在温度梯度小的环境中生长,因此与EFG法等提拉法相比,可以获得更高质量的晶体。还可以改善掺杂剂浓度的面内均匀性。
使用VB法6英寸晶体生长装置生产的晶体从籽晶到最终凝固部分都是透明的,表明它是单晶。最宽的恒定直径部分的直径超过 6 英寸。
日本产业技术综合研究所利用一种被称为“X射线形貌术”的晶体缺陷评价方法,对VB法和EFG法生长的单晶基板的质量进行了评价。结果发现,在使用EFG方法制造的基板中以高密度出现线状缺陷。与此相对,可以确认在利用VB法制造的基板中几乎没有产生线状缺陷。
氧化镓时代,即使到来
FLOSFIA 是京都大学的一家企业,研究“刚玉结构氧化镓 (α-Ga2O3)”,并使用这种材料制造和销售功率器件。该公司成立于2011年,最近的营业收入约为3亿日元。我们还使用我们独特的薄膜沉积技术“雾干法”进行合同薄膜沉积。
在FLOSFIA 看来,通过使用氧化镓功率器件来减少功率转换过程中的损耗,从而减少能量损耗。电能转换损失产生的电力占总发电量的10%以上。FLOSFIA开发的Ga2O3在“Variga品质因数”中具有比硅(Si)高约6,000倍的材料特性,这表明该材料具有减少能量损失的潜力,并且可以为减少能量损失做出贡献。
从减少工艺损失的角度来看,SiC(碳化硅)的生产需要1500~2000℃的高温环境,而α-Ga2O3可以在500℃以下的环境下生产。此外,镓是从铝土矿中提取铝时的副产品,但目前经常被丢弃,因此有效利用它也有助于减少材料损失。
据介绍,氧化镓具有比SiC和GaN(氮化镓)更大的带隙能量等特征,作为实现低功耗、高耐压、小型化的下一代功率器件的材料而受到关注。由于它是与硅不同的材料,因此在硅功率半导体短缺的情况下,它也有望提供稳定的制造/采购。
在氧化镓种类中,还有“β-Ga2O3” ,其晶体结构与我们正在研究的α-Ga2O3不同。然而,在β-Ga2O3功率器件的情况下,有必要从β-Ga2O3体硅片本身的开发开始。因此,要开发出高品质、高价格并能推向市场的功率器件,首先要提高晶圆质量,降低成本。考虑到即使是已经拥有一定市场的SiC功率器件,晶圆(块状晶圆)也占器件成本的40%~60%,未来晶圆价格的降低也并非易事。
相比之下,α-Ga2O3功率器件可以通过使用成熟的技术在蓝宝石衬底上沉积薄膜来制造。由于可以使用现有的晶圆,因此芯片开发的风险和成本可以保持在较低水平。此外,蓝宝石衬底的价格不到SiC晶圆的十分之一,从而可以降低成本并进行大规模生产。据说其材料性能优于β-Ga2O3。
虽然使用传统方法在蓝宝石基板上沉积薄膜存在技术障碍,但FLOSFIA开发了一种独特的雾干燥方法,使得在蓝宝石基板上沉积α-Ga2O3成为可能。雾化干燥法是一种利用原料溶液的雾状和加热部分通过化学反应产生薄氧化膜的技术。FLOSFIA以京都大学藤田静夫教授领导的研究小组开发的“雾气CVD法”为基础,将其发展成为“高取向”、“高纯度”、“可量产”的薄膜沉积技术。” 因此,α-Ga2O3的缺点已被很大程度上克服。
消息显示,FLOSFIA已将使用α-Ga2O3的SBD(肖特基势垒二极管)商品化,商品名为“GaO SBD”,并已开始提供样品。计划于2024年开始量产,预计2025年开始在公司自有工厂全面生产,月产量为1至200万台。未来,他们计划利用该代工厂将产能提高十倍。预计它将用于消费和工业设备。
由于 EV(电动汽车)的普及,功率器件市场正在快速增长。近两年,SiC功率器件的应用数量不断增加,市场初具规模。另一方面,SiC、GaN功率器件的价格已不再超预期下跌,功率半导体材料的稳定供应也出现问题。在此背景下,除SiC和GaN之外的下一代功率半导体材料引起了广泛关注。
金刚石和氮化铝也正在作为下一代功率半导体材料进行研究。其中,α-Ga2O3被认为具有非常优异的材料性能,并且在ROI(投资回报率)方面是迄今为止最好的。客户抱有很高的期望,氧化镓已被视为“最喜欢的材料”。SiC和GaN将在开发下一代功率器件市场方面发挥作用,氧化镓将在扩大该市场方面发挥作用。
从 2024 年开始量产 GaO SBD,我们将增加电流和耐压的变化。与此同时,FLOSFIA将继续研究和开发使用α-Ga2O3的MOSFET,并将开发最大限度地发挥氧化镓特性的封装技术。
FLOSFIA表示,过去几年,公司在GaO SBD的量产上确实遇到了困难。但在遇到重重阻碍的同时,公司反复改进,终于达到了量产。从此,氧化镓的时代将开始。有些人可能会想,“氧化镓真的安全吗?”因为他们已经受苦很久了。然而,在这些失去的岁月里,我们付出了很多努力和发展,也取得了成绩。
请期待氧化镓功率器件时代的开启。
来源:半导体行业观察
审核编辑:汤梓红
-
功率器件
+关注
关注
41文章
1727浏览量
90305 -
SiC
+关注
关注
29文章
2758浏览量
62433 -
GaN
+关注
关注
19文章
1918浏览量
72946 -
碳化硅
+关注
关注
25文章
2691浏览量
48869 -
氧化镓
+关注
关注
5文章
74浏览量
10249
原文标题:氧化镓,进入了六英寸时代
文章出处:【微信号:芯长征科技,微信公众号:芯长征科技】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论