0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

​碳化硅助力实现PFC技术的变革

WOLFSPEED 来源:WOLFSPEED 作者:Wolfspeed 2024-01-02 10:01 次阅读

碳化硅助力实现 PFC 技术的变革

作者:Wolfspeed 产品市场经理 Eric Schulte

碳化硅(SiC)功率器件已经被广泛应用于服务器电源、储能系统和光伏逆变器等领域。近些年来,汽车行业向电力驱动的转变推动了碳化硅(SiC)应用的增长, 也使设计工程师更加关注该技术的优势,并拓宽其应用领域。

选择器件技术

无论应用领域如何,每个电源设计都是以回答一些相同的基本问题着手进行的:输入电压、输出电压和输出电流分别是多少?接下来,设计人员要考虑他们力图在最终产品中实现的性能标准。目前,电源设计人员可以利用多种器件来满足这些标准,包括氮化镓(GaN)、碳化硅(SiC)和各种基于硅(Si)的技术,如 MOSFET、绝缘栅双极晶体管IGBT)和超级结(SJ)器件(图 1)。

wKgZomWTbmqAF_dTAABrA04tzPg592.jpg

图 1:这些技术都有各自的优势和最适用的应用领域

当额定击穿电压低于 400 V,且设计要求以低于 1 kW 的功率进行相对低频率的操作时,硅(Si)通常是一个不错的选择。在制造 USB 充电器等需要高开关频率以减小磁性元件尺寸的紧凑型应用时,氮化镓(GaN)是一个极佳的选择。在功率超过 1 kW、低频率条件下的额定电压介于 600 V 至 1,700 V 的情况下,IGBT 可与碳化硅(SiC)考虑一同使用。不过,对于更高的开关频率或更高的功率密度而言,碳化硅(SiC)是最佳选择。

选择的中心

在图 1 中,多个选择间形成的中心位置位于中等偏高的电压和开关频率。然而,碳化硅(SiC)的高效率使其成为一个令人信服的选择,因为对于物料清单成本和运营成本的权衡可能是一个决定性的因素。

Wolfspeed 碳化硅(SiC)器件具有极低的导通电阻,这意味着导通损耗低且效率高。在这方面,与硅(Si)和氮化镓(GaN)相比(图 2),碳化硅(SiC)在所有应用中均优于其他技术。该材料自身特性使得导通电阻随温度的波动小,而氮化镓(GaN)和硅(Si)的 RDS(ON) 则比室温下的额定值增加 2.5 倍或更多。

wKgZomWTbmqANPRNAABw5z_I8-A006.jpg

图 2:Wolfspeed 碳化硅(SiC)器件

可在很宽的温度范围内保持稳定的低 RDS(ON)

实现 PFC 技术的变革

现代电源整流器是从简单的桥式整流器发展而来的,这种整流器只需要一个“大法拉电容器”来平滑直流输出。增加的无源功率因数校正(PFC)阶段通常带有一个工频频率的 LC 滤波器。这种方法适用于对效率和尺寸没有严格要求的相对低功率的应用(图 3)。

wKgaomWTbmqAcmGNAACmLgwWwOI453.jpg

图 3:全桥整流器从简单的无 PFC

发展到基本的无桥 PFC

如今,大多数开关电源中,升压转换器二极管整流桥之后作为主动 PFC 使用,其开关频率比工频频率高几个数量级,因此可以使用更小的电感器电容器。根据具体应用,在有源 PFC 电路中用碳化硅(SiC)二极管取代硅(Si)基二极管可将能效提高两至三个百分点。

另一方面,将开关频率从 80 kHz 提高到 200 kHz 可以缩小外形尺寸或提高功率密度达 60%。一般来说,提高开关频率有助于缩小电感器的尺寸,并且减少电感器的铜损耗。

然而,当频率从 200 kHz 提高到 400 kHz 时,铜损耗趋于平稳,而电感器磁芯损耗则持续增加。其结果是收益递减,尺寸缩小 10% 至 15%,功率损耗则增加 10% 至 15%。对于那些必须缩小尺寸的应用,这或许是一个可以接受的折衷方案。

要将效率水平提高到 90% 以上,就必须重新绘制电路,去掉二极管桥。为了去掉二极管,一种方法是将电感器移至交流输入端,并用两个 MOSFET 替换桥式电路中的两个底部二极管。左边的开关在正半周提升电压,右边的开关在负半周提升电压。

基本无桥电路所面临的挑战是,高频率开关节点直接连至交流输入,而直流接地相对于交流输入是浮动的。这会导致任何寄生电容直接变成共模 EMI。解决这一问题的常见方法是通过使用无桥双 Boost 或叫做半无桥来实现(图 4,左)。

wKgaomWTbmqAJD0lAABWdwWH3wA419.jpg

图 4:比较无桥双 Boost 解决方案(左)和采用碳化硅

(SiC)实现的全桥演进形式即图腾柱拓扑(右)

在这种拓扑结构中,左下方的两个二极管消除了浮动接地问题,而拆分电感器则消除了开关节点与交流电源的直接连接,从而解决了共模 EMI 问题。虽然可以使用硅(Si)MOSFET,但它们的最高效率为 95% 至 96%,且占地面积更大,需两个电感器,进而总物料清单成本可能更高。

图腾柱拓扑

图腾柱拓扑是无桥双 Boost 拓扑的备选方案,其名称来源于晶体管相互堆叠的方式(图 4,右)。如图所示,图腾柱可以做成全桥 MOSFET 版本,也可以做成无桥版本,即把右侧低频率桥臂的 MOSFET 替换为二极管。

如果在连续导通模式 (CCM) 条件下工作,图腾柱拓扑面临的最大挑战是来自 MOSFET 体二极管的反向恢复电荷。在从低压侧开关转换到高压侧开关的过程中,两个 MOSFET 不能同时导通,体二极管必须在死区时间内导通。硅(Si)的反向恢复特性降低其效率(图 5)。

wKgaomWTbmqAXxkQAAB2Ptfay7U707.jpg

图 5:碳化硅(SiC)与硅(Si)体二极管反向恢复比较

在所有硬开关电源设计中,当体二极管必须导通时,都会产生反向恢复损耗。碳化硅(SiC)没有少数载流子,因此反向恢复电流几乎为零。

而硅(Si)MOSFET 的损耗则要高出几个数量级。这就是硅(Si)器件在图腾柱中无法使用的原因。

全桥图腾柱还是混合图腾柱?

同步整流的图腾柱是效率最高的实现方式。虽然它可以在低频率桥臂使用硅(Si)MOSFET,但只有全部四个碳化硅(SiC)MOSFET 实现了双向运行 — 例如,在连接智能电网的应用中,需要在复杂性和物料清单成本方面做出一些权衡。

包括服务器电源在内的大多数成本敏感型应用都采用无桥或“混合”图腾柱拓扑,在低频率桥臂上使用价格低廉的 PIN 二极管(图 6)。它的优点是所使用的部件数量最少,而且随着 Wolfspeed 的 650V 耐压等级 C3M 碳化硅(SiC)MOSFET的推出,它是一种具有成本效益的实现方式,与全桥相比,轻负载效率降低不到 0.5%。

wKgZomWTbmqAU5oCAABHyabl1nw864.jpg

图 6:使用碳化硅(SiC)MOSFET

和二极管的“混合”图腾柱拓扑

然而,如图 7 所示,要充分发挥图腾柱 PFC 拓扑的潜力,实现高于 99% 的峰值效率,利用全部四个碳化硅(SiC)MOSFET 的全桥图腾柱 PFC 可以消除二极管压降,从而实现最高的效率和功率密度。

wKgZomWTbmqAOQHdAABL-d-DtiU632.jpg

图 7:借助全碳化硅(SiC)MOSFET 的全桥图腾柱 PFC

Wolfspeed CRD-03600AD065E-L 3.6 kW 参考设计已经证明了这一点。该参考设计包括了物料清单、原理图、电路板布局、演示文件、应用指南等,可以下载获取。它采用 Wolfspeed 最新的紧凑、薄型 TOLL 封装 650 V 45 mΩ MOSFET,实现效率大于 99%,且功率密度达到 92W/in3。

这种基于碳化硅(SiC)的图腾柱设计可为交流-直流转换提供尽可能高的效率,使工程师能够设计出满足或超过最严格效率要求(如 80+ 钛标准)的系统。

如需对您的设计进行仿真,可使用在线 SpeedFit 设计仿真器或 SpeedVal Kit 模块化评估平台,后者为系统性能的在板评估提供了一套灵活的构建模块。如有疑问,请在我们的功率应用在线讨论平台上与 Wolfspeed 的碳化硅功率专家联系,或浏览我们网站上的文档、工具和支持等部分。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IGBT
    +关注

    关注

    1264

    文章

    3757

    浏览量

    248183
  • 晶体管
    +关注

    关注

    77

    文章

    9625

    浏览量

    137770
  • PFC
    PFC
    +关注

    关注

    47

    文章

    950

    浏览量

    105814
  • SiC
    SiC
    +关注

    关注

    29

    文章

    2749

    浏览量

    62404
  • 碳化硅
    +关注

    关注

    25

    文章

    2688

    浏览量

    48851

原文标题:​碳化硅助力实现 PFC 技术的变革

文章出处:【微信号:WOLFSPEED,微信公众号:WOLFSPEED】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Wolfspeed碳化硅助力实现高性能功率系统

    Wolfspeed碳化硅助力实现高性能功率系统
    发表于 10-24 10:51 0次下载

    碳化硅功率器件的原理简述

    随着科技的飞速发展,电力电子领域也迎来了前所未有的变革。在这场变革中,碳化硅(SiC)功率器件凭借其独特的性能优势,逐渐成为业界关注的焦点。本文将深入探讨碳化硅功率器件的原理、应用、优
    的头像 发表于 09-11 10:47 386次阅读
    <b class='flag-5'>碳化硅</b>功率器件的原理简述

    碳化硅功率器件的优点和应用

    碳化硅(SiliconCarbide,简称SiC)功率器件是近年来电力电子领域的一项革命性技术。与传统的硅基功率器件相比,碳化硅功率器件在性能和效率方面具有显著优势。本文将深入探讨碳化硅
    的头像 发表于 09-11 10:44 395次阅读
    <b class='flag-5'>碳化硅</b>功率器件的优点和应用

    碳化硅MOS在直流充电桩上的应用

    MOS碳化硅
    瑞森半导体
    发布于 :2024年04月19日 13:59:52

    碳化硅芯片设计:创新引领电子技术的未来

    随着现代电子技术的飞速发展,碳化硅(SiC)作为一种新型的半导体材料,以其优异的物理和化学性能,在功率电子器件领域展现出巨大的应用潜力。碳化硅芯片的设计和制造是实现其广泛应用的关键环节
    的头像 发表于 03-27 09:23 1081次阅读
    <b class='flag-5'>碳化硅</b>芯片设计:创新引领电子<b class='flag-5'>技术</b>的未来

    碳化硅压敏电阻 - 氧化锌 MOV

    碳化硅圆盘压敏电阻 |碳化硅棒和管压敏电阻 | MOV / 氧化锌 (ZnO) 压敏电阻 |带引线的碳化硅压敏电阻 | 硅金属陶瓷复合电阻器 |ZnO 块压敏电阻 关于EAK碳化硅压敏
    发表于 03-08 08:37

    碳化硅特色工艺模块简介

    碳化硅(SiC)是一种宽禁带半导体材料,具有高热导率、高击穿场强、高饱和电子漂移速率和高键合能等优点。由于这些优异的性能,碳化硅在电力电子、微波射频、光电子等领域具有广泛的应用前景。然而,由于碳化硅
    的头像 发表于 01-11 17:33 795次阅读
    <b class='flag-5'>碳化硅</b>特色工艺模块简介

    碳化硅逆变器是什么 功能介绍

    等。这些特性使得碳化硅逆变器在电力电子领域具有广泛的应用前景,特别是在新能源、电动汽车、轨道交通等领域。碳化硅逆变器的工作原理是利用碳化硅半导体材料的高载流子迁移率和低导通电阻特性,实现
    的头像 发表于 01-10 13:55 1486次阅读

    碳化硅功率器件简介、优势和应用

    碳化硅(SiC)是一种优良的宽禁带半导体材料,具有高击穿电场、高热导率、低介电常数等特点,因此在高温、高频、大功率应用领域具有显著优势。碳化硅功率器件是利用碳化硅材料制成的电力电子器件,主要包括
    的头像 发表于 01-09 09:26 2723次阅读

    三种碳化硅外延生长炉的差异

    碳化硅衬底有诸多缺陷无法直接加工,需要在其上经过外延工艺生长出特定单晶薄膜才能制作芯片晶圆,这层薄膜便是外延层。几乎所有的碳化硅器件均在外延材料上实现,高质量的碳化硅同质外延材料是
    的头像 发表于 12-15 09:45 2887次阅读
    三种<b class='flag-5'>碳化硅</b>外延生长炉的差异

    碳化硅晶片制备技术与国际产业布局

    碳化硅晶片薄化技术碳化硅断裂韧性较低,在薄化过程中易开裂,导致碳化硅晶片的减薄非常困难。碳化硅切片的薄化主要通过磨削与研磨
    发表于 12-12 12:29 717次阅读
    <b class='flag-5'>碳化硅</b>晶片制备<b class='flag-5'>技术</b>与国际产业布局

    碳化硅的5大优势

    碳化硅(SiC),又名碳化硅,是一种硅和碳化合物。其材料特性使SiC器件具有高阻断电压能力和低比导通电阻。
    的头像 发表于 12-12 09:47 1669次阅读
    <b class='flag-5'>碳化硅</b>的5大优势

    碳化硅是如何制造的?碳化硅的优点和应用

    碳化硅,又称SiC,是一种由纯硅和纯碳组成的半导体基材。您可以将SiC与氮或磷掺杂以形成n型半导体,或将其与铍、硼、铝或镓掺杂以形成p型半导体。虽然碳化硅的品种和纯度很多,但半导体级质量的碳化硅只是在过去几十年中才浮出水面。
    的头像 发表于 12-08 09:49 1639次阅读

    碳化硅器件介绍与仿真

    本推文主要介碳化硅器件,想要入门碳化硅器件的同学可以学习了解。
    的头像 发表于 11-27 17:48 1625次阅读
    <b class='flag-5'>碳化硅</b>器件介绍与仿真