1 月 5 日报道,斯丹佛大学科研团队以 OpenAI 研发的 CLIP 神经网络为基础,设计出摄影图像定位项目 PIGEON,它能根据街景图推测拍摄地所在,精准度高达 92%。
借助 PIGEON APP,仅需一张街景照,就能有效确定位置,精确度高达 92%。更有逾 40%的时间,可以将定位结果精准至离实际位置 25 公里之内。
且据悉,PIGEON 已在与知名 GeoGuessr 玩家 Trevor Rainbolt 的角逐中取得六连胜佳绩,成为 GeoGuessr 游戏中的顶尖高手,实力位列全球前 0.01%之列。
而正是GeoGuessr这样的地理问答游戏,自 2013 年 5 月 9 日起由瑞典IT专家安东·瓦伦设立并发布,玩家将随机置身某个谷歌街景中,仅凭有限信息猜出处。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
神经网络
+关注
关注
42文章
4772浏览量
100800 -
Clip
+关注
关注
0文章
31浏览量
6669 -
OpenAI
+关注
关注
9文章
1092浏览量
6537
发布评论请先 登录
相关推荐
卷积神经网络与传统神经网络的比较
在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统
python做bp神经网络预测数据
BP神经网络(Backpropagation Neural Network)是一种多层前馈神经网络,通过反向传播算法进行训练。它在许多领域,如模式识别、数据挖掘、预测分析等,都有广泛的应用。本文将
bp神经网络预测模型建模步骤
BP神经网络(Backpropagation Neural Network)是一种多层前馈神经网络,其核心思想是通过反向传播算法来调整网络中的权重和偏置,从而实现对输入数据的预测或分类
神经网络预测模型的构建方法
神经网络模型作为一种强大的预测工具,广泛应用于各种领域,如金融、医疗、交通等。本文将详细介绍神经网络预测模型的构建方法,包括模型设计、数据集准备、模型训练、验证与评估等步骤,并附以代码
人工神经网络模型的分类有哪些
人工神经网络(Artificial Neural Networks, ANNs)是一种模拟人脑神经元网络的计算模型,它在许多领域,如图像识别、语音识别、自然语言处理、预测分析等有着广泛
反向传播神经网络和bp神经网络的区别
神经网络在许多领域都有广泛的应用,如语音识别、图像识别、自然语言处理等。然而,BP神经网络也存在一些问题,如容易陷入局部最优解、训练时间长、对初始权重敏感等。为了解决这些问题,研究者们提出了一些改进的BP
神经网络预测误差大小怎么看
神经网络预测误差大小是衡量神经网络性能的重要指标之一。本文将介绍如何评估神经网络预测误差大小,包括误差的定义、评估方法、误差分析以及误差优化
神经网络拟合的误差怎么分析
神经网络拟合误差分析是一个复杂且深入的话题,涉及到多个方面,需要从数据质量、模型结构、训练过程和正则化方法等多个角度进行综合考虑。 引言 神经网络是一种强大的机器学习模型,广泛应用于各种领域,如图像
如何使用神经网络进行建模和预测
神经网络是一种强大的机器学习技术,可以用于建模和预测变量之间的关系。 神经网络的基本概念 神经网络是一种受人脑启发的计算模型,由大量的节点(神经
bp神经网络模型怎么算预测值
BP神经网络(Backpropagation Neural Network,简称BP网络)是一种多层前馈神经网络,它通过反向传播算法来调整网络中的权重和偏置,从而实现对输入数据的
卷积神经网络的原理与实现
1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积神经网络是一种前馈神经网络
人工神经网络的含义和用途是
神经网络在许多领域都有广泛的应用,包括图像识别、语音识别、自然语言处理、推荐系统、预测分析等。 一、人工神经网络的含义 定义:人工神经网络是
神经网络在图像识别中的应用
随着人工智能技术的飞速发展,神经网络在图像识别领域的应用日益广泛。神经网络以其强大的特征提取和分类能力,为图像识别带来了革命性的进步。本文将详细介绍
评论