0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI Agent:大模型的下一个高地

科技云报到 来源:jf_60444065 作者:jf_60444065 2024-01-15 12:36 509次阅读

科技云报道原创

当所有人都沉浸在与ChatGPT对话的乐趣中,一场静水流深的变革已然启动。

2023年11月,比尔·盖茨发表了一篇文章,他表示,AI Agent将是大模型之后的下一个平台,不仅改变每个人与计算机互动的方式,还将在五年内彻底改变我们的生活。

如果说大模型是未来水电煤一般的基础设施,那么Agent则是未来用户接触、使用AI的方式。

AI Agent不再满足于仅仅作为“聊天对象”的角色,而是渴望成为能在真实世界里挥洒自如的“智能执行者”。

数据显示,过去两年间,针对AI Agent的研究投入增长幅度高达300%。大模型市场的玩家们,似乎正齐刷刷地转向AI Agent。

在国内,截止去年11月中旬,AI Agent赛道发生融资事件13起,总融资金额约735亿人民币,公司融资均值为56.54亿人民币。

在国外,据外媒MattSchlicht数据显示,至少有100个项目正致力于将AI代理商业化,近10万名开发人员正在构建自主Agent。

毫无疑问,AI Agent正在成为大模型之后下一个爆发点。

值得探讨的是,作为一种巨大的技术变革,AI Agent将如何改变我们的生活?国内外AI Agent的发展现状如何?AI Agent落地的关键点是什么?

AI Agent:自主执行任务的“小助手”

去年4月份,斯坦福和谷歌的研究者共同创建了一个“西部世界小镇(Westworldsimulation)”。在这个小镇里,25个AI Agent每天都在乐此不疲地散步、约会、聊天、用餐以及分享当天的新闻。

wKgZomWktmKAYBliAAHJ6QnVXCo669.jpg

在这个实验中,AI Agent(智能体)在执行任务和互动上表现出了令人惊艳的自主性和智能性,由此引发了业界的高度关注。

事实上,这并不是AI Agent第一次出圈,其概念从出现到爆发,已经迈过多个阶段。

在单一Agent阶段,主要是针对不同领域和场景的特定任务,开发和部署专门的智能体。以GPTengineer为例,给它一个需求,其就可以把代码写个大概。

在多Agent合作阶段,是由不同角色的Agent自动合作完成复杂的任务。

例如在MetaGPT上,如果让其做一个股票分析的工具,它会把这个任务分别翻译给产品经理、架构师、项目经理等5个角色,模拟整个的软件开发中所有决策工作流。

不过,随着微软全新工具AutoGen的发布,AI Agent很快翻开了新的篇章。

AutoGen允许多个LLM智能体通过聊天来解决任务。LLM智能体可以扮演各种角色,如程序员、设计师,或者是各种角色的组合,对话过程就把任务解决了。

与MetaGPT不同的是,MetaGPT的角色模型是被定义好的,而AutoGen可以让开发者自己定义Agent,还可以让他们相互对话。

这是一个新的且富有创造性的Agent框架。在AutoGen发布的两个星期内,星标量从390狂增到10K,并在Discord上吸引了5000多名成员。

如果说AutoGPT拉开了自主智能体(Autonomous Agent)的帷幕,那么前文提到的“西部世界小镇”则开启了生成智能体(Generative Agent)之路。

生成智能体就像美剧《西部世界》中的人形机器人或《失控玩家》中的智能NPC,它们在同一环境中生活,拥有自己的记忆和目标,不仅与人类交往,还会与其他机器人互动。

总的来说,AI Agent是一个能够自主行动、执行任务的“小助手”,能够针对目标独立思考并做出行动,会根据给定任务详细拆解出每一步的计划步骤,依靠来自外界的反馈和自主思考,为自己创建prompt以实现目标。

比如,让AI Agent买一杯咖啡,它会首先拆解如何才能为你购买一杯咖啡并拟定代用某APP下单以及支付等若干步骤,然后按照这些步骤调用APP选择外卖,再调用支付程序下单支付,过程无需人类去指定每一步操作。

而目前基于LLM的ChatGPT给出的反馈,只能止于“无法购买咖啡,它只是一个文字AI助手”之类的回答。

这也就不难理解,为什么AI Agent会是大模型的下一个高地——大模型聚焦于处理语言相关的任务,它并不直接与现实世界互动,而AI Agent强调解决实际问题的能力和与环境交互的全面性。

AI Agent加速落地

事实上,大模型还没有出现之前,一些企业就已在研究传统AI与Agent的结合应用。因此,AI Agent在各领域的落地比大家预想得要快很多。

目前,海外已经在零售、房地产、旅游、客户服务、人力资源、金融、制造业等多个领域出现AI Agent架构与产品,例如:

在医疗领域,Agent可以帮助诊断、治疗和监测患者。IBM Watson Health 是一个AI智能体,可以分析医疗数据,以识别潜在的健康问题并推荐治疗方案。

在金融领域,Agent可以分析财务数据、检测欺诈行为并提出投资建议。嘉信理财(Charles Schwab)使用名为Intelligent Portfolio的人工智能智能体,根据客户的投资目标创建和管理投资组合。

在零售业务场景中,Agent可以提供个性化推荐,改善供应链管理,增强客户体验。亚马逊的Alexa是一个AI智能体,可以推荐产品、下订单和跟踪发货。

在制造业,Agent可以优化生产流程,预测维护需求,提高产品质量。通用电气使用名为Predix的AI智能体实时监控机器,以预测和防止设备故障。

在运输领域,自主AI Agent可以协助路线规划、交通管理和车辆安全。特斯拉的Autopilot有助于自动驾驶车辆,并帮助驾驶员停车、变道和安全驾驶。

不仅如此,在底层技术方面,AI Agent也打下了不错的基础。

例如,OpenAI开发的GPTs,以及推出的GPT-4Turbo和可定制AI Agent,提供了基础Agent的构建能力,如工具调用、基于知识库文件记忆能力等,使得AI Agent进入了另外一个新阶段,即人人都可以打造自己的Agent。

但总的来说,AI Agent技术还处于比较早期的阶段,主要在两个类型的场景中更容易落地:

一类是具有交互性质的场景。

例如,智能机器人和问答式交互,这与AI Agent的迭代性质天生匹配。在这种情境下,对于一些简单的任务,比如购买火车票或解决企业内部IT服务的问题,任务型机器人的应用效果较好,并且相对容易维护。

另一类是线性执行任务的场景。

例如,一家支付公司要求用户在开户时提交身份证明,在这种场景下,前台是单向的,但后台可以利用AI Agent执行,相较于原有的流水线,AI Agnet更为高效。

AI Agent落地挑战

尽量理想很美好,但当前市场上的大多数AI Agent,其实只是构建了一个基于特定知识库或专业数据的Chatbot。这些智能体主要用于进行问答交互,如获取行业资讯、报告等,在程序联动和操作方面还有很大的提升空间。

在一些更复杂的场景中,现有的AI Agent技术只能做到辅助,无法完全实现自动执行。

这背后的原因有很多,包括技术能力、商业化路径、应用场景等,都会影响Agent的能力体现。

首当其冲的,依然是技术问题。

LLM作为AI Agent的认知核心,其智能性在很大程度上决定了AI Agent感知环境、做出决策并执行适当行动的能力。但就目前而言,包括GPT-4在内的所有大模型,能力仍需提升。

同时,AI Agent继承了LLM的一些问题,比如“幻觉”、“可解释性”等问题。此外,对于底层基础模块的质量和性能,包括调用图像识别等模型,也会直接影响到上层建筑的性能。

此外,Agnet各个模块之间的交互和运行可能会产生许多中间结果和状态,这也带来了一些技术挑战。例如,处理中间结果的鲁棒性是一个问题,下层模块的性能和质量会直接影响上层模块的执行。

其次,AI Agent的落地效果也受限于应用场景。

例如,在出行预订中,得益于丰富的API等问题,AI Agent表现出色。而在如法律助手场景中,由于新知识的频繁出现和API的不完善,实际应用面临更多挑战。

这一点,从国内AI Agent纷纷生长于协同办公平台就可见一斑。

由于协同办公平台本身具备良好的API接口和插件体系,这使得将大模型集成到现有工具中变得更加容易。

同时,许多企业都在使用协同办公软件,这意味着广泛的用户基础可以加速大模型的迭代和优化过程,使其更好地满足用户需求。

最后,找到切入点以及好的商业模式至关重要。

AI Agent爆发的一段时间,人们普遍认为补齐了大模型短板的AI Agent更具备实用性,将是大模型重要落地方向。

但就目前而言,这一路径的商业化存在诸多问题。拿游戏场景而言,目前收费主要来源于出售游戏装备、皮肤等方式,而AI Agent的价值无法体现在这些固有的变现途径上。

由于AI Agent落地效果未出现颠覆性的能力,C端用户是否会为其买单无法得知,能否成为AI大模型从C端商业化爆发一个最核心应用方向,还需时间验证。

相对来说,B端可能更适合AI Agent的落地。在Agent构建平台上,企业或将可以自己构建自己RPA、CRM、办公OA等一系列管理软件;软件厂商也可以基于此平台构建软件为企业提供服务。

但这仍需要成本控制、投入预算、实现效率、安全管控等多方面严格及缜密的评估。

结语

无论存在多少质疑,时至今日,AI Agent依然带来了诸多想象力。技术发展之路本就充满质疑与批判,科技变革对于任何一个企业与个体都是一场机遇,关键在于如何把握它。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    32023

    浏览量

    270898
  • ChatGPT
    +关注

    关注

    29

    文章

    1577

    浏览量

    8187
  • 大模型
    +关注

    关注

    2

    文章

    2715

    浏览量

    3323
收藏 人收藏

    相关推荐

    AI Agent 应用与项目实战》第1-2章阅读心得——理解Agent框架与Coze平台的应用

    的局限。Agent不仅仅是简单的执行单元,而是集成了感知、规划、决策、执行等多个模块的智能系统。在实际工作中,我们经常需要处理数据清
    发表于 02-19 16:35

    浅谈AI Agent的发展阶段

    2025年伊始,有关AI变革潜力的讨论热度正不断攀升。人们对AI的关注焦点正从AI工具转向创建及部署AI Agent。在今年最新发布的文章中
    的头像 发表于 02-19 09:50 103次阅读

    AI Agent崛起为AI应用的核心架构

    最近,开源中国 OSCHINA、Gitee 与 Gitee AI 联合发布了《2024 中国开源开发者报告》。 报告聚焦 AI模型领域,对过去年的技术演进动态、技术趋势、以及开源
    的头像 发表于 02-14 17:54 371次阅读

    Agent应用实战:从广告智能助手落地到平台化赋能

    前言 自2022年底ChatGPT发布以来,大模型成为非常火爆的话题。如何在生活和工作中把大模型用的更好、更具价值,业界致认为Agent是其中
    的头像 发表于 02-14 14:54 584次阅读
    <b class='flag-5'>Agent</b>应用实战:从广告智能助手落地到平台化赋能

    长城汽车Coffee Agent与DeepSeek实现技术深度融合

    研发的大模型,此次融合了DeepSeek R1模型的特点,使其在理解、思考和推理能力上得到了显著提升。这技术融合,不仅增强了Coffee Agent的智能性,也为其在更多场景下的应用
    的头像 发表于 02-10 09:41 515次阅读

    【书籍评测活动NO.55】AI Agent应用与项目实战

    在电影中,我们经常会看到这样场景:主人公早晨刚刚醒来,打开手机后,它的智能助理——AI Agent已经为他整理了今天的日程、分析了昨晚的睡眠数据,并根据他的情况推荐了早餐菜单,并且
    发表于 01-13 11:04

    长城汽车Coffee Agent模型通过生成式AI服务备案

    人工智能服务的规范化建设。 作为率先通过备案的车企之,长城汽车在AI模型产品的开发与应用上展现了前瞻性的布局和卓越的创新能力。Coffee Agent
    的头像 发表于 12-02 10:46 699次阅读

    商汤科技AI模型助力智能家电革新升级

    从2016年到2022年,我国电视日均开机率从70%下降到30%。电视如何重回家庭娱乐C位?AI成为智能电视下一个可以预见的未来。
    的头像 发表于 11-19 10:25 360次阅读

    AI模型市场分析

    随着人工智能技术的快速发展,AI模型已成为全球科技竞争的新高地、未来产业的新赛道以及经济发展的新引擎。下面,AI部落小编分析了当前AI
    的头像 发表于 11-01 09:51 268次阅读

    微软Dynamics365集成10大自主AI Agent,引领智能自动化新时代

    近日,微软宣布在Dynamics365中集成了10全新的自主AI Agent,这创新举措将为企业带来前所未有的智能自动化工作模式。这些AI
    的头像 发表于 10-23 11:25 462次阅读

    使用tSPI协议减少下一个多电机BLDC设计的布线

    电子发烧友网站提供《使用tSPI协议减少下一个多电机BLDC设计的布线.pdf》资料免费下载
    发表于 09-26 10:40 0次下载
    使用tSPI协议减少<b class='flag-5'>下一个</b>多电机BLDC设计的布线

    基于Qwen-Agent与OpenVINO构建本地AI智能体

    Qwen2 是阿里巴巴集团 Qwen 团队研发的大语言模型和大型多模态模型系列。Qwen2 具备自然语言理解、文本生成、视觉理解、音频理解、工具使用、角色扮演、作为 AI Agent
    的头像 发表于 07-26 09:54 951次阅读
    基于Qwen-<b class='flag-5'>Agent</b>与OpenVINO构建本地<b class='flag-5'>AI</b>智能体

    一下一个单片机的io口分别控制四灯板该怎么设计电路?

    各位大佬,我想问一下一个单片机的io口分别控制四灯板该怎么设计电路,每个灯板上有四种不同类型的灯,每种类型的灯有两都通过三极管来驱动,那么每种类型的灯都连接到同一个io口,有四块板
    发表于 07-15 19:03

    AI造梦师,大模型正在孵化下一个黄金职业

    AI电影造梦师这个领域,切都将是新的
    的头像 发表于 05-28 09:20 1796次阅读
    <b class='flag-5'>AI</b>造梦师,大<b class='flag-5'>模型</b>正在孵化<b class='flag-5'>下一个</b>黄金职业

    华为正接洽收购高合汽车 目标“打造下一个赛力斯”?

    据中工汽车网获悉,2月27日,在片唱衰高合汽车的舆论浪潮下,网络上又出现了华为正接洽收购高合汽车,并且目标“打造下一个赛力斯”的消息。
    的头像 发表于 02-28 14:14 1019次阅读
    华为正接洽收购高合汽车 目标“打造<b class='flag-5'>下一个</b>赛力斯”?