0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI计算,为什么要用GPU?

颖脉Imgtec 2024-01-26 08:29 次阅读

今天这篇文章,我们继续来聊聊芯片

在之前的文章里,小枣君说过,行业里通常会把半导体芯片分为数字芯片和模拟芯片。其中,数字芯片的市场规模占比较大,达到70%左右。

数字芯片,还可以进一步细分,分为:逻辑芯片、存储芯片以及微控制单元(MCU)。


0338f7ca-bbe2-11ee-aa22-92fbcf53809c.png

存储芯片和MCU以后再介绍,今天小枣君重点讲讲逻辑芯片

逻辑芯片,其实说白了就是计算芯片。它包含了各种逻辑门电路,可以实现运算与逻辑判断功能,是最常见的芯片之一。


大家经常听说的CPUGPUFPGAASIC,全部都属于逻辑芯片。而现在特别火爆的AI,用到的所谓“AI芯片”,也主要是指它们。


CPU(中央处理器

先说说大家最熟悉的CPU,英文全称Central Processing Unit,中央处理器。


但凡是个人都知道,CPU是计算机的心脏。


现代计算机,都是基于1940年代诞生的冯·诺依曼架构。在这个架构中,包括了运算器(也叫逻辑运算单元,ALU)、控制器(CU)、存储器、输入设备、输出设备等组成部分。


0344163c-bbe2-11ee-aa22-92fbcf53809c.png

冯·诺依曼架构


数据来了,会先放到存储器。然后,控制器会从存储器拿到相应数据,再交给运算器进行运算。运算完成后,再把结果返回到存储器。


这个流程,还有一个更有逼格的叫法:“Fetch(取指)-Decode(译码)- Execute(执行)-Memory Access(访存)-Write Back(写回)”。


大家看到了,运算器和控制器这两个核心功能,都是由CPU负责承担的。


具体来说,运算器(包括加法器、减法器、乘法器、除法器),负责执行算术和逻辑运算,是真正干活的。控制器,负责从内存中读取指令、解码指令、执行指令,是指手画脚的。


除了运算器和控制器之外,CPU还包括时钟模块和寄存器(高速缓存)等组件。


0348077e-bbe2-11ee-aa22-92fbcf53809c.png

时钟模块负责管理CPU的时间,为CPU提供稳定的时基。它通过周期性地发出信号,驱动CPU中的所有操作,调度各个模块的工作。

寄存器是CPU中的高速存储器,用于暂时保存指令和数据。它的CPU与内存(RAM)之间的“缓冲”,速度比一般的内存更快,避免内存“拖累”CPU的工作。


寄存器的容量和存取性能,可以影响CPU到对内存的访问次数,进而影响整个系统的效率。后面我们讲存储芯片的时候,还会提到它。


CPU一般会基于指令集架构进行分类,包括x86架构和非x86架构。x86基本上都是复杂指令集(CISC),而非x86基本为精简指令集(RISC)。


PC和大部分服务器用的是x86架构,英特尔AMD公司占据主导地位。非x86架构的类型比较多,这些年崛起速度很快,主要有ARM、MIPS、Power、RISC-V、Alpha等。以后会专门介绍。


GPU(图形处理器)

再来看看GPU。

GPU是显卡的核心部件,英文全名叫Graphics Processing Unit,图形处理单元(图形处理器)。

GPU并不能和显卡划等号。显卡除了GPU之外,还包括显存、VRM稳压模块、MRAM芯片、总线、风扇、外围设备接口等。


034c905a-bbe2-11ee-aa22-92fbcf53809c.png

显卡

1999年,英伟达(NVIDIA)公司率先提出了GPU的概念。

之所以要提出GPU,是因为90年代游戏和多媒体业务高速发展。这些业务给计算机的3D图形处理和渲染能力提出了更高的要求。传统CPU搞不定,所以引入了GPU,分担这方面的工作。


根据形态,GPU可分为独立GPU(dGPU,discrete/dedicated GPU)和集成GPU(iGPU,integrated GPU),也就是常说的独显、集显。


GPU也是计算芯片。所以,它和CPU一样,包括了运算器、控制器和寄存器等组件。


但是,因为GPU主要负责图形处理任务,所以,它的内部架构和CPU存在很大的不同。


0353571e-bbe2-11ee-aa22-92fbcf53809c.png

如上图所示,CPU的内核(包括了ALU)数量比较少,最多只有几十个。但是,CPU有大量的缓存(Cache)和复杂的控制器(CU)。


这样设计的原因,是因为CPU是一个通用处理器。作为计算机的主核心,它的任务非常复杂,既要应对不同类型的数据计算,还要响应人机交互。


复杂的条件和分支,还有任务之间的同步协调,会带来大量的分支跳转和中断处理工作。它需要更大的缓存,保存各种任务状态,以降低任务切换时的时延。它也需要更复杂的控制器,进行逻辑控制和调度。


CPU的强项是管理和调度。真正干活的功能,反而不强(ALU占比大约5%~20%)。

如果我们把处理器看成是一个餐厅的话,CPU就像一个拥有几十名高级厨师的全能型餐厅。这个餐厅什么菜系都能做,但是,因为菜系多,所以需要花费大量的时间协调、配菜,上菜的速度相对比较慢。


而GPU则完全不同。


GPU为图形处理而生,任务非常明确且单一。它要做的,就是图形渲染。图形是由海量像素点组成的,属于类型高度统一、相互无依赖的大规模数据。

所以,GPU的任务,是在最短的时间里,完成大量同质化数据的并行运算。所谓调度和协调的“杂活”,反而很少。


并行计算,当然需要更多的核啊。


如前图所示,GPU的内核数,远远超过CPU,可以达到几千个甚至上万个(也因此被称为“众核”)。


0357819a-bbe2-11ee-aa22-92fbcf53809c.jpg

RTX4090有16384个流处理器


GPU的核,称为流式多处理器(Stream Multi-processor,SM),是一个独立的任务处理单元。


在整个GPU中,会划分为多个流式处理区。每个处理区,包含数百个内核。每个内核,相当于一颗简化版的CPU,具备整数运算和浮点运算的功能,以及排队和结果收集功能。


GPU的控制器功能简单,缓存也比较少。它的ALU占比,可以达到80%以上。


虽然GPU单核的处理能力弱于CPU,但是数量庞大,非常适合高强度并行计算。同等晶体管规模条件下,它的算力,反而比CPU更强。


还是以餐厅为例。GPU就像一个拥有成千上万名初级厨师的单一型餐厅。它只适合做某种指定菜系。但是,因为厨师多,配菜简单,所以大家一起炒,上菜速度反而快。



GPU与AI计算

大家都知道,现在的AI计算,都在抢购GPU。英伟达也因此赚得盆满钵满。为什么会这样呢?


原因很简单,因为AI计算和图形计算一样,也包含了大量的高强度并行计算任务。


深度学习是目前最主流的人工智能算法。从过程来看,包括训练(training)和推理(inference)两个环节。


038362ec-bbe2-11ee-aa22-92fbcf53809c.png

在训练环节,通过投喂大量的数据,训练出一个复杂的神经网络模型。在推理环节,利用训练好的模型,使用大量数据推理出各种结论。


训练环节由于涉及海量的训练数据,以及复杂的深度神经网络结构,所以需要的计算规模非常庞大,对芯片的算力性能要求比较高。而推理环节,对简单指定的重复计算和低延迟的要求很高。


它们所采用的具体算法,包括矩阵相乘、卷积、循环层、梯度运算等,分解为大量并行任务,可以有效缩短任务完成的时间。


GPU凭借自身强悍的并行计算能力以及内存带宽,可以很好地应对训练和推理任务,已经成为业界在深度学习领域的首选解决方案。


目前,大部分企业的AI训练,采用的是英伟达的GPU集群。如果进行合理优化,一块GPU卡,可以提供相当于数十其至上百台CPU服务器的算力。


不过,在推理环节,GPU的市场份额占比并没有那么高。具体原因我们后面会讲。

将GPU应用于图形之外的计算,最早源于2003年。


那一年,GPGPU(General Purpose computing on GPU,基于GPU的通用计算)的概念首次被提出。意指利用GPU的计算能力,在非图形处理领域进行更通用、更广泛的科学计算。


GPGPU在传统GPU的基础上,进行了进一步的优化设计,使之更适合高性能并行计算。


2009年,斯坦福的几位学者,首次展示了利用GPU训练深度神经网络的成果,引起了轰动。


几年后,2012年,神经网络之父杰弗里·辛顿(Geoffrey Hinton)的两个学生——亚历克斯·克里切夫斯基(Alex Krizhevsky)、伊利亚·苏茨克沃(Ilya Sutskever),利用“深度学习+GPU”的方案,提出了深度神经网络AlexNet,将识别成功率从74%提升到85%,一举赢得Image Net挑战赛的冠军。


这彻底引爆了“AI+GPU”的浪潮。英伟达公司迅速跟进,砸了大量的资源,在三年时间里,将GPU性能提升了65倍。

除了硬刚算力之外,他们还积极构建围绕GPU的开发生态。他们建立了基于自家GPU的CUDA(Compute Unified Device Architecture)生态系统,提供完善的开发环境和方案,帮助开发人员更容易地使用GPU进行深度学习开发或高性能运算。


这些早期的精心布局,最终帮助英伟达在AIGC爆发时收获了巨大的红利。目前,他们市值高达1.22万亿美元(英特尔的近6倍),是名副其实的“AI无冕之王”。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4700

    浏览量

    128672
  • AI
    AI
    +关注

    关注

    87

    文章

    30072

    浏览量

    268331
  • 数字芯片
    +关注

    关注

    1

    文章

    107

    浏览量

    18369
收藏 人收藏

    评论

    相关推荐

    AI计算,为什么要用GPU

    :逻辑芯片、存储芯片以及微控制单元(MCU)。         存储芯片和MCU以后再介绍,今天小枣君重点讲讲 逻辑芯片 。   逻辑芯片,其实说白了就是计算芯片。它包含了各种逻辑门电路,可以实现运算与逻辑判断功能,是最常见的芯片之一。
    的头像 发表于 01-04 11:49 716次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>计算</b>,为什么<b class='flag-5'>要用</b><b class='flag-5'>GPU</b>?

    省成本还是省时间,AI计算上的GPU与ASIC之选

    电子发烧友网报道(文/周凯扬)随着AI计算逐渐蚕食通用计算的份额,数据中心的硬件市场已经开始出现了微妙的变化。最抢手的目前已经成了GPU,反观CPU、ASIC和FPGA等硬件,开始成为
    的头像 发表于 07-17 00:01 1245次阅读
    省成本还是省时间,<b class='flag-5'>AI</b><b class='flag-5'>计算</b>上的<b class='flag-5'>GPU</b>与ASIC之选

    ASIC和GPU,谁才是AI计算的最优解?

    电子发烧友网报道(文/周凯扬)随着AI计算开始有着风头盖过通用计算开始,不少芯片厂商都将其视为下一轮技术革新。CPU、GPU、FPGA和ASIC纷纷投入到这轮
    的头像 发表于 12-03 08:31 2014次阅读
    ASIC和<b class='flag-5'>GPU</b>,谁才是<b class='flag-5'>AI</b><b class='flag-5'>计算</b>的最优解?

    NVIDIA火热招聘GPU高性能计算架构师

    这边是NVIDIA HR Allen, 我们目前在上海招聘GPU高性能计算架构师(功能验证)的岗位,有意向的朋友欢迎发送简历到 allelin@nvidia.comWechat
    发表于 09-01 17:22

    【产品活动】阿里云GPU云服务器年付5折!阿里云异构计算助推行业发展!

    摘要: 阿里云GPU云服务器全力支持AI生态发展,进一步普惠开发者红利,本周将会推出针对异构计算GPU实例GN5年付5折的优惠活动,希望能够打造良好的
    发表于 12-26 11:22

    深度学习推理和计算-通用AI核心

    ,支持广泛的应用程序和动态工作负载。本文将讨论这些行业挑战可以在不同级别的硬件和软件设计采用Xilinx VERSAL AI核心,业界首创自适应计算加速平台超越了CPU/GPU和FPGA的性能。
    发表于 11-01 09:28

    ai芯片和gpu的区别

    ai芯片和gpu的区别▌车载芯片的发展趋势(CPU-GPU-FPGA-ASIC)过去汽车电子芯片以与传感器一一对应的电子控制单元(ECU)为主,主要分布与发动机等核心部件上。...
    发表于 07-27 07:29

    GPU八大主流的应用场景

    GPU来完成。但GPU于手机及PC端渗透率基本见顶,根据中国社科院数据,2011-2018年全球主要国家PC每百人渗透率呈下降趋势,智能手机对PC具有一定替代性。而云计算与智能驾驶及AI
    发表于 12-07 10:04

    浪潮AIStation突破企业AI计算资源极限,高效共享GPU

    对于AI企业来说,GPU计算资源昂贵,如何提高资源利用率,保护计算力投资?如何解决资源抢占,保证资源使用公平合理?
    发表于 04-06 09:35 1203次阅读
    浪潮AIStation突破企业<b class='flag-5'>AI</b><b class='flag-5'>计算</b>资源极限,高效共享<b class='flag-5'>GPU</b>

    未来的AI计算领域,将是CPU、GPU、IPU并行

    AI近些年的大火,直接促进了CPU和GPU的发展,而英伟达的GPU真正借此迅速成为AI市场的主流产品之一,其势头甚至盖过了CPU。
    的头像 发表于 10-19 16:04 3333次阅读
    未来的<b class='flag-5'>AI</b><b class='flag-5'>计算</b>领域,将是CPU、<b class='flag-5'>GPU</b>、IPU并行

    AI GPU计算在工厂车间提供数据中心性能

    用于自动检测的 AI GPU 计算改变了质量控制操作、运行复杂的视觉算法并整合了工作负载。
    发表于 08-12 16:01 263次阅读

    国产计算GPU沐曦MXC500用时5小时完成功能测试

    而MXC系列GPU(曦云)主要用AI训练及通用计算,MXG系列GPU(曦彩)用于图形渲染。而此次成功点亮的
    的头像 发表于 06-16 09:55 2424次阅读

    英伟达用AI设计GPU算术电路有何优势

    大量的算术电路阵列为英伟达GPU提供了动力,以实现前所未有的AI、高性能计算计算机图形加速。因此,改进这些算术电路的设计对于提升 GPU
    发表于 12-05 11:05 401次阅读

    为什么ai模型训练要用gpu

    GPU凭借其强大的并行处理能力和高效的内存系统,已成为AI模型训练不可或缺的重要工具。
    的头像 发表于 10-24 09:39 190次阅读

    GPU加速计算平台是什么

    GPU加速计算平台,简而言之,是利用图形处理器(GPU)的强大并行计算能力来加速科学计算、数据分析、机器学习等复杂
    的头像 发表于 10-25 09:23 210次阅读