0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何保护电力线通信 (PLC) 系统:需要了解的两项技术

海阔天空的专栏 来源:Kenton Williston 作者:Kenton Williston 2024-02-13 14:22 次阅读

作者:Kenton Williston

投稿人:DigiKey 北美编辑

智能电网智能电表和智能路灯这样的智能能源基础设施装置都需要可靠、经济、安全的通信。虽然无线技术可以发挥作用,但其脆弱性、成本和覆盖范围的限制带来了巨大挑战。电力线通信 (PLC) 技术可通过现有的电力线进行数据传输,是实现关键通信的良好基础技术。

尽管 PLC 的定义明确且应用广泛,但设计人员仍需注意一些可能破坏通信的问题,如信号衰减、噪声和瞬态电压。要解决这些问题,就需要切实有效的解决方案,以确保最佳性能。PLC 变压器和 GMOV 过压保护器就是其中的两种解决方案。

PLC 变压器经过优化,可将窄带 (NB) 应用中的插损降至最低。它们还能减少电隔离和电磁干扰 (EMI) ,提高信号质量和可靠性。GMOV 是一种混合过压保护元件,结合了气体放电管 (GDT) 和金属氧化物压敏电阻 (MOV)。其设计克服了标准 MOV 的局限性和故障问题,因为标准 MOV 在恶劣和不受控制环境中容易发生降级和热击穿。

本文简要回顾了 PLC 的工作原理及其适合智能基础设施的原因。然后介绍了 [Bourns] 提供的 PLC 变压器和 GMOV 保护器实例器件,说明它们的工作原理,并介绍对之进行选择和应用时应考虑的一些因素。

PLC 操作、应用和挑战

在 PLC 系统中,所要传输的数据要先调制到载波信号中,然后再注入电力线。不同应用的细节差别很大,但 IEEE 1901.2 是全球电网标准。该标准规定了低频(≤ 500 千赫兹 (kHz))窄带通信速率最高 500 千比特/秒(Kb/s),适用于智能电网、智能电表和智能街道照明等应用。

尽管 PLC 技术已被证明是智能能源基础设施设计人员的有用解决方案,但它也并非没有挑战。设计障碍包括信号衰减、噪声和瞬态电压,所有这些都会大大降低通信质量和可靠性。具体而言:

  • 信号衰减是一个问题,因为 PLC 信号使用的线路是为输电而设计的,而不是为数据设计的。这些线路的阻抗特性会造成相当大的衰减,尤其是在长距离上。由此造成的信号强度下降会降低有效范围,并可能导致数据丢失或出错。
  • 噪声有多种来源,如连接到电力线上的电子设备、供电变化和外部 EMI。PLC 数据信号的频率相对较高,因此特别容易受到非屏蔽电网中这些噪声源的影响。
  • 雷击或感性负载开关可能会导致 瞬态电压 。这种瞬态会在电力线上产生高电压,可能会损坏 PLC 调制解调器。

在应对 PLC 系统面临的挑战时,设计人员可以采用两种关键技术:PLC 变压器和 GMOV 保护器。这两个组件在确保 PLC 系统的可靠性、性能和安全性方面发挥着至关重要的作用。

设计评审:耦合电路中的 PLC 变压器和 GMOV

为了说明 PLC 变压器和 GMOV 可以解决的问题,请参看图 1 所示的耦合电路。该电路必须将 PLC 调制解调器 (Z 模块 ) 与电力线 (Z 线 ) 隔离,同时为数据信号提供路径。在此过程中,耦合电路必须同时处理高频、低功率通信信号和低频、高功率交流电。

带浪涌保护的简化耦合电路图片图 1:所示为带浪涌保护功能的简化耦合电路,可将 PLC 调制解调器 (Z 模块 ) 与电力线 (Z 线 ) 隔离,同时还能为数据信号提供路径。(图片来源:Bourns)

PLC 变压器 (T1) 在 PLC 调制解调器和电力线之间提供电隔离,帮助将 PLC 与交流电网分开。这些变压器有一个重要特征,就是插损极小,因此减少了信号失真和衰减。例如,图 2 显示了 Bourns 的 PFB 系列 PLC 变压器的性能,适用于 500 kHz 以下的窄带应用。此外,PLC 变压器抑制电磁干扰的能力也有助于降低噪音,从而提高通信的可靠性和效率。

PFB 系列 PLC 变压器插损与频率关系图(点击放大)图 2:所示为专为 500 kHz 以下窄带应用定制的 PFB 系列 PLC 变压器的插损与频率关系图。(图片来源:Bourns)

在图 1 中,瞬态电压同样由 GMOV 保护器处理(图 3)。这种新型器件是一种混合过压保护元件,集成了 MOV 的快速响应和 GDT 的高浪涌电流处理能力。这种组合可提供强大的保护,防止雷击或开关事件引起的瞬态电压损坏 PLC 系统中的电子电路。

在 GMOV 中,MOV 和 GDT 元件采用串联配置进行容性耦合。在低频条件下,GMOV 元件的电压限制等于 MOV 和 GDT 元件的电压限制之和。

GMOV 结合了 MOV 的快速响应和 GDT 的高浪涌电流处理能力图片图 3:GMOV 结合了 MOV 的快速响应和 GDT 的高浪涌电流处理能力。(图片来源:Bourns)

与容易降级和热击穿的标准MOV 不同,GMOV 保护器的设计能够承受恶劣和不受控的环境。 MOV 元件可将过高电压钳位到安全水平,而GDT 则可在极端浪涌条件下起到故障保护作用。这一功能可将过多的能量从MOV 上引开,从而延长其使用寿命,降低系统故障的可能性。

PLC 变压器和 GMOV 保护器的设计考虑因素

为 PLC 系统设计线路耦合电路需要仔细考虑关键元件及其相互作用。以下是设计中需要考虑的一些问题。

PLC 系统要求 :在开始设计流程之前,要清楚地了解 PLC 系统的要求。这包括所需的数据传输速率、工作范围、工作的电力线类型以及所处的环境条件。

安全与合规 :对于用户或维护人员可能接触到的设计部分,安全问题尤为重要。根据应用的不同,设计可能需要符合 EN 62368-1(信息技术和视听设备)或 EN 61885(通信网络和电力设施自动化)规范要求。

从通信角度来看,设计通常必须符合欧洲 CENELEC EN 50065-1 标准,该标准规定了最大信号电平和允许的载波频段。

选择 PLC 变压器 :检查变压器是否符合工作频率、电压和阻抗要求。例如,前面提到的 Bourns PFB 系列针对 NB PLC (NB-PLC) 应用进行了优化,使其适用于远距离操作。PFB 系列支持低压和中压范围,可用于室内和室外环境。

请务必选择匝数比能使 PLC 调制解调器阻抗与电力线阻抗相匹配的变压器。很多时候,调制解调器的阻抗无法改变,因此必须仔细选择变压器,以实现阻抗匹配,从而有效传输信号。

此外,还要考虑应用环境。例如,PFB 系列有标准型和加长型两种。标准型 [PFBR45-ST13150S] 专为在安全外壳内使用而设计,而加长型 [PFB45-SP13150S]则增加了安全功能,可用于维护工人或用户可能接触到的区域。后一种型号的增强绝缘可防止电击,并将最终用户与危险的输入电压隔离开来。图 4 说明了这两种模式的主要特点。

| | BOURNS 零件编号 | 100 KHZ /1 V 时
初级侧电感 | 100 KHZ / 1 V 时
漏电感
(全部次级侧引脚均短接) | 匝比 | 最大 DCR | 50 KHZ 时绕组间电容 | 耐压

1 秒/1 MA
PFBR45-ST13150S(1-4)1 mH, +35%, -30%(1-4)典型值 1.5 μH(最大值 2 μH)(1-4):(7-5)2:1 ±3%
(1-4):(8-6)2:1 ±3%
(7-5)115 mΩ(8-6)105 mΩ
PFBR45-SP13150S(9-6)1.15 mH, +3%(9-6)最大 1.3 μH(9-6):(1-4)2:1 ±3%
(9-6):(2-5)2:1 ±3%(1-5),(2,4) 短接350 mΩ(1-5)625 V 交流电

图 4:与 PFBR45-ST13150S 相比,加长型 PFB45-SP13150S PLC 变压器具有更强的安全功能。(图片来源:Bourns)

选择 GMOV 保护器 :在选择合适的保护器时,要考虑系统可能面临的电涌和瞬态电压类型。例如,Bourns 提供 14 毫米 (mm) 的 GMOV 保护器(如 [GMOV-14D301K]),可支持 6 千安 (kA) 的浪涌电流,以及 20 毫米 (mm) 的变型(如 [GMOV-20D151K]),可支持 10 千安的浪涌电流。值得注意的是,14 mm 和 20 mm 变型在尺寸和封装上都与标准 MOV 兼容。图 5 提供了这些器件的完整可用配置列表。

| | Bourns 零件编号 | 工作 | 保护 |
| ----------------------------------- | ------------------------------- | -------------------- |
| 最大持续工作电压 (MCOV) | MCOV 时的最大漏电流 | 最大电容 | I名义
UL 1449/第 4 版 | I最大限度 |环波浪涌
IEEE 62.41 |保护级别/ 电流等级
IEC 61051-1 | 钳位渡越时间 | 能量 |
| V有效值 | V直流 | A有效值 | 1 MHz | 15 工作 | 1 工作 | 200 A | 最大 | 类型 | 8/20 μs |
| V | V | μA | pF | A | A | 工作 | VFP | VC | μ s | J |
| GMOV-14D450K | 45 | 45 56 | 56 <1 | 4 | 3,000 | 6,000 | ±250 | 900 | 900 150 | 150 0.3 | 0.3 24 |
| GMOV-14D500K | 50 | 50 65 | 65 <1 | 4 | 3,000 | 6,000 | ±250 | 800 | 150 | 150 0.3 | 0.3 27 | 27
| GMOV-14D650K | 65 | 65 85 | 85 <1 | 4 | 3,000 | 6,000 | ±250 | 800 | 185 | 185 0.3 | 0.3 33 | 33
| GMOV-14D950K | 95 | 95 125 | 125 <1 | 4 | 3,000 | 6,000 | ±250 | 800 | 270 | 270 0.3 | 0.3 53 | 53
| GMOV-14D111K | 115 | 115 150 | 150 <1 | 4 | 3,000 | 6,000 | ±250 | 800 | 320 | 320 0.3 | 0.3 60|
| GMOV-14D131K | 130 | 130 170 | 170 <1 | 4 | 3,000 | 6,000 | ±250 | 800 | 360 | 360 0.3 | 0.3 70 | 70
| GMOV-14D141K | 140 | 140 180 | 180 <1 | 4 | 3,000 | 6,000 | ±250 | 950 | 950 380 | 380 0.3 | 0.3 78 | 78
| GMOV-14D151 | 150 | 150 200 | 200 <1 | 4 | 3,000 | 6,000 | ±250 | 950 | 950 420 | 420 0.3 | 0.3 84 | 84
| GMOV-14D171K | 175 | 175 225 | 225 <1 | 4 | 3,000 | 6,000 | ±250 | 950 | 950 470 | 470 0.3 | 0.3 99 | 99
| GMOV-14D231K | 230 | 230 300 | 300 <1 | 4 | 3,000 | 6,000 | ±250 | 1,300 | 1,300 620 | 620 0.3 | 0.3 130 | 130
| GMOV-14D251K | 250 | 250 320 | 320 <1 | 4 | 3,000 | 6,000 | ±250 | 1,300 | 1,300 675 | 675 0.3 | 0.3 140 | 140
| GMOV-14D271K | 275 | 275 350 | 350 <1 | 4 | 3,000 | 6,000 | ±250 | 1,300 | 1,300 730 | 730 0.3 | 0.3 155 | 155
| GMOV-14D301K | 300 | 300 385 | 385 <1 | 4 | 3,000 | 6,000 | ±250 | 1,300 | 1,300 800 | 0.3 | 0.3 175 | 175
| GMOV-14D321K | 320 | 320 145 | 145 <1 | 4 | 3,000 | 6,000 | ±250 | 1,300 | 1,300 875 | 875 0.3 | 0.3 180 | 180
| |
| GMOV-20D450K | 45 | 45 56 | 56 <1 | 4 | 5,000 | 10,000 | ±250 | 950 | 950 150 | 150 0.3 | 0.3 49 | 49
| GMOV-20D500K | 50 | 50 65 | 65 <1 | 4 | 5,000 | 10,000 | ±250 | 900 | 900 150 | 150 0.3 | 0.3 56 | 56
| GMOV-20D650K | 65 | 65 85 | 85 <1 | 4 | 5,000 | 10,000 | ±250 | 900 | 900 185 | 185 0.3 | 0.3 70 | 70
| GMOV-20D950K | 95 | 95 125 | 125 <1 | 4 | 5,000 | 10,000 | ±250 | 900 | 900 270 | 270 0.3 | 0.3 106 | 106
| GMOV-20D111K | 115 | 115 150 | 150 <1 | 4 | 5,000 | 10,000 | ±250 | 950 | 950 320 | 320 0.3 | 0.3 130 | 130
| GMOV-20D131K | 130 | 130 170 | 170 <1 | 4 | 5,000 | 10,000 | ±250 | 950 | 950 360 | 360 0.3 | 0.3 140 | 140
| GMOV-20D141K | 140 | 140 180 | 180 <1 | 4 | 5,000 | 10,000 | ±250 | 950 | 950 380 | 380 0.3 | 0.3 155 | 155
| GMOV-20D151K | 150 | 150 200 | 200 <1 | 4 | 5,000 | 10,000 | ±250 | 950 | 950 420 | 420 0.3 | 0.3 168 | 168
| GMOV-20D171K | 175 | 175 225 | 225 <1 | 4 | 5,000 | 10,000 | ±250 | 950 | 950 470 | 470 0.3 | 0.3 190 | 190
| GMOV-20D231K | 230 | 230 300 | 300 <1 | 4 | 5,000 | 10,000 | ±250 | 1,300 | 1,300 620 | 620 0.3 | 0.3 255 | 255
| GMOV-20D251K | 250 | 250 320 | 320 <1 | 4 | 5,000 | 10,000 | ±250 | 1,300 | 1,300 675 | 675 0.3 | 0.3 275 | 275
| GMOV-20D271K | 275 | 275 350 | 350 <1 | 4 | 5,000 | 10,000 | ±250 | 1,300 | 1,300 730 | 730 0.3 | 0.3 305 | 305
| GMOV-20D301K | 300 | 300 385 | 385 <1 | 4 | 5,000 | 10,000 | ±250 | 1,300 | 1,300 800 | 0.3 | 0.3 |
| GMOV-20D321K | 320 | 320 415 | 415 <1 | 4 | 5,000 | 10,000 | ±250 | 1,300 | 1,300 875 | 875 0.3 | 0.3 360 | 360

图 5:GMOV 保护器有 14 mm 和 20 mm 两种型号,后者可支持更大的浪涌电流。(图片来源:Bourns)

同样重要的是,要注意电容和漏电流。高电容会阻碍 PLC 系统的数据传输。Bourns GMOV 保护器的电容小于 2 皮法 (pF),可将信号失真降至最低,这意味着它不会对电力线上的数据传输造成明显影响。

Bourns GMOV 保护器的漏电流也小于 1 微安 (µA)。虽然泄漏看似小事一桩,但在城市规模的应用中,泄漏加起来就不容小觑了。例如,在路灯应用中,漏电流为 10 微安,乘以典型城市地区的一百万盏路灯,泄漏造成的能量损失就非常可观。

结语

随着以智能电网、智能电表和智能路灯为特征的智能能源基础设施的出现,可靠、经济、高效的通信系统成为人们关注的需求焦点。综上所述,PLC 就是一个合适的选择,特别是在有专门的 PLC 变压器和 GMOV 保护器的支持下,可确保信号质量和可靠性,防止瞬变或浪涌,同时最大限度地减少漏电流。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • plc
    plc
    +关注

    关注

    5006

    文章

    13084

    浏览量

    461208
  • 调制解调器
    +关注

    关注

    3

    文章

    841

    浏览量

    38727
  • 保护器
    +关注

    关注

    6

    文章

    992

    浏览量

    33366
  • 变压器
    +关注

    关注

    0

    文章

    1081

    浏览量

    4010
收藏 人收藏

    评论

    相关推荐

    基于电力线载波的注水测调通信系统的研究

    】:针对油田注水井测试调节系统中存在的问题,提出并设计了基于电力线载波(PLC)的远程测调技术方案。利用LonWorks现场总线处理通信任务
    发表于 05-06 09:06

    DC应用的电力线通信实施

    这一技术的参考设计。  系统集成人员常提出这样的问题:如何比较 DC 电力线 PLC 和低功耗无线技术的优劣?虽然 DC 线路
    发表于 09-30 16:14

    实现电力线通信的关键技术是什么

      1前言  近年来,电力线通信技术发展非常迅速,现在已经进入初步应用阶段。PLC系统充分利用电力系统
    发表于 05-30 06:26

    电力线通信模拟前端AFE031的应用及设计介绍

    应用背景、基本框架及系统设计三个方面进行介绍。一. 应用背景电力线通信(Power Line Communication, PLC)是一种利用电力线
    发表于 11-07 07:18

    电力线通信(PLC)技术综述

    论述了电力线通信技术概况、技术分类、功能定位、主要用途、网络体系结构特征、发展动态、标准化进展、EMC问题等,侧重于宏观分析,不涉及技术细节
    发表于 08-03 11:03 19次下载

    中压电力线通信技术原理及应用

    中压电力线通信技术原理及应用 概述:本文总结了近年来国内外中压电力线通信相关领域的研究成果,对中压电力
    发表于 03-12 17:34 1126次阅读
    中压<b class='flag-5'>电力线</b><b class='flag-5'>通信</b><b class='flag-5'>技术</b>原理及应用

    电力线接入,电力线接入是什么意思

    电力线接入,电力线接入是什么意思 早先的电力线通信主要集中在高压远距离传输,后来,低频高压电力线通信
    发表于 04-06 11:17 3150次阅读

    电力线通信技术原理及应用

    中压电力线通信(MV-PLC)技术是指利用电力传输网络中的中压电力线(通常指10KV电压等级)作
    发表于 01-13 22:30 4006次阅读
    <b class='flag-5'>电力线</b><b class='flag-5'>通信</b><b class='flag-5'>技术</b>原理及应用

    国外高速电力线通信技术发展分析

    PLC就是以电力线作为通信媒介的一种通信方式。电力线从来就不是一种理想的通信介质,但随着
    发表于 03-29 10:49 1次下载

    如何设计可靠的电力线通信

    电力线通信PLC)是一种采用电力线作为通讯介质的通信技术。在与供电同一根
    发表于 08-06 16:47 1990次阅读
    如何设计可靠的<b class='flag-5'>电力线</b><b class='flag-5'>通信</b>

    电力线通信技术的基本原理及其数字通信技术的上网研究

    电力线载波通信PLc)是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。介绍电力线
    发表于 11-10 10:22 35次下载
    <b class='flag-5'>电力线</b><b class='flag-5'>通信</b><b class='flag-5'>技术</b>的基本原理及其数字<b class='flag-5'>通信</b><b class='flag-5'>技术</b>的上网研究

    介绍了解MCU电力线通信解决方案

    瑞萨电子公司李天太为大家讲述:MCU电力线通信PLC)解决方案。
    的头像 发表于 06-14 04:14 4901次阅读
    介绍<b class='flag-5'>了解</b>MCU<b class='flag-5'>电力线</b><b class='flag-5'>通信</b>解决方案

    高速电力线通信电磁兼容技术标准的研究动态

    近年来,电力线通信技术发展非常迅速,现在已经进入初步应用阶段。PLC系统充分利用电力系统的广泛线
    发表于 08-06 18:53 0次下载
    高速<b class='flag-5'>电力线</b><b class='flag-5'>通信</b>电磁兼容<b class='flag-5'>技术</b>标准的研究动态

    PLC网关在电力线通信技术中的应用

    PLC网关在电力线通信技术中的应用
    发表于 11-06 10:43 1105次阅读
    <b class='flag-5'>PLC</b>网关在<b class='flag-5'>电力线</b><b class='flag-5'>通信</b><b class='flag-5'>技术</b>中的应用

    电力线通信模拟前端AFE031的应用及设计概述

           电力线通信(Power Line Communication, PLC)是一种利用电力线进行数据信息传输的通信
    发表于 03-22 09:41 1318次阅读
    <b class='flag-5'>电力线</b><b class='flag-5'>通信</b>模拟前端AFE031的应用及设计概述