我们对g_ethercat_ssc_port0_ext_cfg这个全局变量深入追踪,其成员变量 g_ether_PHY0,正好是一个PHY实例的详细描述体。
/* Instance structure to use this module. */ const ether_PHY_instance_t g_ether_PHY0 = { .p_ctrl = &g_ether_PHY0_ctrl, .p_cfg = &g_ether_PHY0_cfg, .p_api = &g_ether_PHY_on_ether_PHY };
其中g_ether_PHY0_cfg是pyh实例的配置结构体:
const ether_PHY_cfg_t g_ether_PHY0_cfg = { .channel = 0, .PHY_lsi_address = 0, .PHY_reset_wait_time = 0x00020000, .mii_bit_access_wait_time = 0, // Unused .flow_control = ETHER_PHY_FLOW_CONTROL_DISABLE, .mii_type = (ether_PHY_mii_type_t) 0, // Unused .p_context = NULL, .p_extend = &g_ether_PHY0_extend };
这里又通过p_extend 做了扩展配置(其实可以合并在一起)如下所示:
const ether_PHY_extend_cfg_t g_ether_PHY0_extend = { .port_type = ETHER_PHY_PORT_TYPE_ETHER_CAT, .PHY_chip = (ether_PHY_chip_t) ETHER_PHY_CHIP_VSC8541, .mdio_type = ETHER_PHY_MDIO_GMAC, .bps = ETHER_PHY_SPEED_100, .duplex = ETHER_PHY_DUPLEX_FULL, .auto_negotiation = ETHER_PHY_AUTO_NEGOTIATION_ON, .PHY_reset_pin = BSP_IO_PORT_20_PIN_7, .PHY_reset_time = 15000, .p_selector_instance = (ether_selector_instance_t *)&g_ether_selector0, };
可以看到上面的扩展配置当中,PHY的具体硬件型号都已经列出,如PHY_chip = (ether_PHY_chip_t) ETHER_PHY_CHIP_;
可以看到在示例代码当中已经支持的PHY如下所示:
/** Identify PHY-LSI */ typedef enum e_ether_PHY_chip { ETHER_PHY_CHIP_VSC8541 = (1 << 0), ///< VSC8541 ETHER_PHY_CHIP_KSZ9131 = (1 << 1), ///< KSZ9131 ETHER_PHY_CHIP_KSZ9031 = (1 << 2), ///< KSZ9031 ETHER_PHY_CHIP_KSZ8081 = (1 << 3), ///< KSZ8081 ETHER_PHY_CHIP_KSZ8041 = (1 << 4) ///< KSZ8041 } ether_PHY_chip_t;
这里具体看一下 g_ether_selector0 这个 ether_selector_instance_t 类型的全局指针,指向 selector driver实例的成员变量:
typedef struct st_ether_selector_instance { ether_selector_ctrl_t * p_ctrl; ///< Pointer to the control structure for this instance ether_selector_cfg_t const * p_cfg; ///< Pointer to the configuration structure for this instance ether_selector_api_t const * p_api; ///< Pointer to the API structure for this instance } ether_selector_instance_t;
这又是一个类似的结构体,通过三个指针来分别指向结构本身,selector的具体配置,和配置selector过程中所需要用的的成员方法api.
看一下selector的具体配置信息:
typedef struct st_ether_selector_cfg { uint8_t port; ///< Port number ether_selector_PHYlink_polarity_t PHYlink; ///< PHY link signal polarity ether_selector_interface_t interface; ///< Converter mode ether_selector_speed_t speed; ///< Converter Speed ether_selector_duplex_t duplex; ///< Converter Duplex ether_selector_ref_clock_t ref_clock; ///< Converter REF_CLK void const * p_extend; ///< Placeholder for user extension. } ether_selector_cfg_t;
可以看到selector 对应的端口号,PHY连接信号对应的极性,接口模式,速率,全双工,以及外部时钟输入。再看一下配置selector的过程中所需要用到的API函数:
const ether_selector_api_t g_ether_selector_on_ether_selector = { .open = R_ETHER_SELECTOR_Open, .converterSet = R_ETHER_SELECTOR_ConverterSet, .close = R_ETHER_SELECTOR_Close, .versionGet = R_ETHER_SELECTOR_VersionGet };
其最主要的成员方法就是R_ETHER_SELECTOR_Open做了些什么:
先初始化ETHER_SELECTOR
/* One time initialization for all ETHER_SELECTOR instances. */ r_ether_selector_state_initialize(); /* Unlock write access protection for Ethernet subsystem registers */ r_ether_selector_reg_protection_disable(p_reg_ethss); /* Set the function of Ethernet ports. */ sw_mode = ETHER_SELECTOR_CFG_MODE; p_reg_ethss->MODCTRL_b.SW_MODE = sw_mode & ETHER_SELECTOR_MODCTRL_BIT_SWMODE_MASK; /* Set the MAC of all port for half-duplex. */ p_reg_ethss->SWDUPC_b.PHY_DUPLEX = 0; /* Set all Ethernet switch port to select not use 10Mbps. */ p_reg_ethss->SWCTRL_b.SET10 = 0;
根据端口号来选择对应控制寄存器
/* Set RGMII/RMII Converter configuration */ switch (port) { case 0: { p_reg_convctrl = (uint32_t *) &p_reg_ethss->CONVCTRL[0]; break; } case 1: { p_reg_convctrl = (uint32_t *) &p_reg_ethss->CONVCTRL[1]; break; } case 2: default: { p_reg_convctrl = (uint32_t *) &p_reg_ethss->CONVCTRL[2]; break; } }
根据指向selector的配置信息:
const ether_selector_cfg_t g_ether_selector0_cfg = { .port = 0, .PHYlink = ETHER_SELECTOR_PHYLINK_POLARITY_LOW, .interface = ETHER_SELECTOR_INTERFACE_RGMII, .speed = ETHER_SELECTOR_SPEED_100MBPS, .duplex = ETHER_SELECTOR_DUPLEX_FULL, .ref_clock = ETHER_SELECTOR_REF_CLOCK_INPUT, .p_extend = NULL, };
来对CONVCTRL[port_number]寄存器做相应的配置
这里结合RZ/T2M的用户手册,很容易理解其中的意思:
结合代码来看,总体ETHER_SELECTOR 的驱动的配置流程图台下所示:
在对ETHER_SELECTOR驱动做完配置后,下面具体看一下对ETHER_PHY_CHIP这个PHY,代码具体做了哪些操作:
首先是做初始化:
oid ether_PHY_targets_initialize_vsc8541 (ether_PHY_instance_ctrl_t * p_instance_ctrl) { /* Vendor Specific PHY Registers */ #define ETHER_PHY_REG_LED_MODE_SELECT (0x1D) #define ETHER_PHY_REG_LED_BEHAVIOR (0x1E) #define ETHER_PHY_REG_EXTEND_GPIO_PAGE (0x1F) ...
这个初始化函数,并没有对IEEE 标准规定的16个寄存器做读写操作,只对厂商自定义的寄存器做了配置。初始化完成之后,对是否打开自动协商的功能对PHY进行了读写:
这里可以看到对PHY芯生来说,需要配置的寄存器并不是很多,大多数情况下,把自动协商寄存器配置好,就可以了。除此之后就是厂商自定义的寄存器的一些自定义的功能。这部分功能需要结合用户手册来理解和使用,大部分也是用来调试和指示的作用以及一些IEEE基本标准之外的特色功能,比如节能标准之类的。
对于用户说来,搞清楚数据结构之间的关联,剩下的就是驱动代码的执行逻辑,考虑到执行逻辑并不复杂,这里不展开来说。用户可以参考录屏材料进一步深入了解。
其它
经过验证的PHY芯片列表:
审核编辑:刘清
-
以太网
+关注
关注
40文章
5334浏览量
170698 -
寄存器
+关注
关注
31文章
5282浏览量
119763 -
PHY
+关注
关注
2文章
301浏览量
51649
原文标题:工业以太网PHY驱动适配参考文档(完结篇)
文章出处:【微信号:瑞萨MCU小百科,微信公众号:瑞萨MCU小百科】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论