外延工艺解决了什么问题?
只有体单晶材料难以满足日益发展的各种半导体器件制作的需要。因此,1959年末开发了薄层单晶材料生长技外延生长。那外延技术到底对材料的进步有了什么具体的帮助呢? 对于硅而言,硅外延生长技术开始的时候,真是硅高频大功率晶体管制做遇见困难的时刻。从晶体管原理来看,要获得高频大功率,必须做到集电区击穿电压要高,串联电阻要小,即饱和压降要小。前者要求集电区材料电阻率要高,而后者要求集电区材料电阻率要低,两省互相矛盾。如果采用集电极区材料厚度减薄的方式来减少串联电阻,会使硅片太薄易碎,无法加工,若降低材料的电阻率,又与第一个要求矛盾,而外延技术的发展则成功地解决了这一困难。
解决方案:在电阻极低的衬底上生长一层高电阻率外延层,器件制作在外延层上,这样高电阻率的外延层保证了管子有高的击穿电压,而低电阻的衬底又降低了基片的电阻,从而降低了饱和压降,从而解决了二者的矛盾。此外,GaAs等Ⅲ-Ⅴ族、Ⅱ-Ⅵ族以及其他分子化合物半导体材料的气相外延、液相外延等外延技术也都得到很大的发展,已成为绝大多数书微波器件、光电器件、功率器件等制作不可缺少的工艺技术,特别是分子束、金属有机气相外延技术在薄层、超晶格、量子阱、应变超晶格、原子级薄层外延方面的成功应用,为半导体研究的新领域“能带工程”的开拓打下了夯实的基础。
外延技术的7大技能
1、可以在低(高)阻衬底上外延生长高(低)阻外延层。
2、可以在P(N)型衬底上外延生长N(P)型外延层,直接形成PN结,不存在用扩散法在单晶基片上制作PN结时的补偿的问题。
3、与掩膜技术结合,在指定的区域进行选择外延生长,为集成电路和结构特殊的器件的制作创造了条件。
4、可以在外延生长过程中根据需要改变掺杂的种类及浓度,浓度的变化可以是陡变的,也可以是缓变的。
5、可以生长异质,多层,多组分化合物且组分可变的超薄层。
6、可在低于材料熔点温度下进行外延生长,生长速率可控,可以实现原子级尺寸厚度的外延生长。
7、可以生长不能拉制单晶材料,如GaN,三、四元系化合物的单晶层等。
一言以蔽之,外延层比衬底材料更易于获得完美可控的晶体结构,更利于材料的应用开发。
审核编辑:黄飞
-
光电器件
+关注
关注
1文章
178浏览量
18513 -
功率器件
+关注
关注
41文章
1763浏览量
90422 -
电阻率
+关注
关注
0文章
92浏览量
10709 -
半导体器件
+关注
关注
12文章
750浏览量
32040 -
功率晶体管
+关注
关注
3文章
647浏览量
17564
原文标题:半导体器件为什么需要“外延层”
文章出处:【微信号:芯长征科技,微信公众号:芯长征科技】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论