0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于双极性电极的微流控芯片,用于生物颗粒和细胞分选

微流控 来源:分析人 2024-02-25 10:09 次阅读

在生物化学应用中,对细胞或颗粒进行无鞘流聚焦和分选是一个重要的预处理步骤。以往的分选方法大多依赖于使用鞘流来实现高效的细胞聚焦。然而,鞘流的引入会稀释并降低生物颗粒的活性,并需要通过额外的通道进行精确的流量控制,于系统的搭建成本和复杂性不利。因此,如何实现无鞘流聚焦和分选一直是该领域需要解决的问题。

近期,西北工业大学吴玉潘副教授、王少熙教授课题组报道了一种新型方法:通过基于双极性电极(BPE)的感应电荷电渗(ICEO)流和介电泳(DEP)力以及声辐射力的协同作用,实现了对颗粒和细胞的无鞘流聚焦、偏移和分选。相关成果以“Bipolar Electrode-based Sheath-Less Focusing and Continuous AcousticSorting of Particles and Cells in an Integrated Microfluidic Device”为题发表在国际化学权威杂志Analytical Chemistry上。

基于以上方法,研究人员开发了一种简单低成本的集成式微流控芯片,其中包括细胞与颗粒的电场聚焦偏移与声场分选两个模块,分别称为模块I与模块II。如图1所示,可以看到,该集成式微流控芯片结构简单,包括一个用于样品注射的入口和两个用于分选和收集目标颗粒的出口。模块I中有两个BPE,分别为BPE i和BPE ii。其中BPE i始终处于悬浮态,用于预聚焦颗粒或细胞;而BPE ii提供了与外电路的接口,可通电变为激发态,用于偏移经BPE i聚焦后形成的粒子束。而模块II具有倾斜的叉指换能器(IDT),由于逆压电效应,在通道中形成了taSSAW,多条压力波节线连续捕获受到声场作用力更大的颗粒,用于分选目标颗粒。

54291f34-d2b2-11ee-a297-92fbcf53809c.png

图1 (a)用于颗粒聚焦与分选的集成式微流控芯片工作原理示意图;(b)BPE上的ICEO原理;(c)SSAW声场形成原理。其中,AN为压力波腹,PN为压力波节。

该集成微流控芯片的3D示意图、实物图以及加电方式如图2所示。

5433466c-d2b2-11ee-a297-92fbcf53809c.png

图2 用于颗粒电场聚焦与声场分选的集成式微流控芯片示意图:(a)集成式聚焦分选微流控芯片的3D示意图;(b)集成式聚焦分选微流控芯片实物图;(c)图(b)中红色虚线区域I的显微图,即电场聚焦模块的通道以及电极(指出了加电方式);(d)图(b)中红色虚线区域II的显微图,即声场分选模块的通道以及电极(指出了加电方式)。

研究人员首先通过分选5 μm和8 μm PS微球来验证这种集成式微流控芯片的功能(图3),然后通过改变BPE的电压来精确调整粒子束以实现更高的分选性能(图4)。为了验证对细胞的有效性,研究人员还对THP-1细胞和酵母细胞进行了集成的无鞘流电场聚焦、偏移和声学分选,获得了比有鞘流声学分选更好的性能(图5)。

5437b152-d2b2-11ee-a297-92fbcf53809c.png

图3 悬浮电极BPE ii未加电时,对8 μm 与5 μm PS微球的电场聚焦和声场分选。

543c0df6-d2b2-11ee-a297-92fbcf53809c.png

图4 悬浮电极BPE ii接地时,对8 μm与5 μm PS微球的电场聚焦偏移和声场分选。

5452a1c4-d2b2-11ee-a297-92fbcf53809c.png

图5 对THP-1细胞与酵母菌的电场聚焦和声场分选:(a)THP-1细胞和酵母菌的CM因子实部比较;(b)不同频率(30 kHz ~ 40 MHz)下THP-1细胞和酵母菌在悬浮电极表面的平均DEP速度与ICEO流速的比较;(c-f)聚焦分选实验效果及统计分析。

综上所述,研究人员提出了一种用于聚焦、偏移和分选细胞的无鞘流且稳定的微流控方法。这种方法减少了使用的泵的数量和系统的体积,同时降低了成本,进一步为以非接触、生物相容和无标签的方式进行无鞘流细胞分选提供了一种新的独特途径,在生物研究和疾病诊断中显示出巨大的潜力。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微流控芯片
    +关注

    关注

    13

    文章

    278

    浏览量

    18887
  • 换能器
    +关注

    关注

    8

    文章

    347

    浏览量

    29584

原文标题:基于双极性电极的微流控芯片,用于生物颗粒和细胞分选

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Aigtek高电压放大器细胞筛选测试

    、应用以及高压放大器在其中的作用。 细胞筛选的基本概念 细胞筛选是指在
    的头像 发表于 01-20 16:33 99次阅读
    Aigtek高电压放大器<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>筛选测试

    玻璃芯片的特点

    得它们非常适合于需要光学观察和分析的应用,如荧光显微镜观察、激光诱导荧光(LIF)检测等。 2. 优异的耐高压性 玻璃芯片能够承受较高的压力,这使得它们适用于需要高压操作的实验,
    的头像 发表于 12-13 15:26 187次阅读

    控技术的生物学应用

    控技术为在推动生物学众多领域的强大工具做出了巨大贡献。随着用于通道中流体的注射、混合、泵送和存储的新器件和工艺的发展,近年来
    的头像 发表于 12-01 21:50 192次阅读

    常用的芯片类型

    芯片是一种集成了多种尺度功能单元的微型设备,它能够在微米级别上精确操控流体,广泛应用于生物
    的头像 发表于 11-21 15:13 579次阅读

    高通量生物分析技术之芯片

    高通量生物分析技术是指同时对一个样品中的多个指标或者对多个样品中的一个指标同步进行并行分析,以在最短的时间内获得最多的生物信息的新型分析技术。
    的头像 发表于 11-14 15:50 264次阅读

    S型芯片的优势

    芯片的基本概念 芯片,也被称为芯片实验室
    的头像 发表于 11-01 14:30 352次阅读

    控阵列芯片和普通芯片的区别

    生物化学研究,而普通芯片则广泛应用于电子设备中。 设计原理与结构 控阵列芯片:设计重点在于微
    的头像 发表于 10-30 15:10 312次阅读

    ATG-2000系列功率信号源在介电电泳细胞分选测试中的应用

    在所有基于电场的控预处理技术中,介电电泳(Dielectrophoresis,DEP)技术具有生物相容性、无需标记、可控性及易集成等优势,在生物样本分离检测中具有巨大的应用潜力,已
    的头像 发表于 10-12 16:27 215次阅读
    ATG-2000系列功率信号源在介电电泳<b class='flag-5'>细胞</b><b class='flag-5'>分选</b>测试中的应用

    ATA-7020高压放大器在控3D细胞球培养中的应用

    过程中,细胞原始生物学特性的保存却被忽略了。近期,中国科学院纳米科学卓越中心Linglin教授团队提出了一个集成的控设备来完成整个过程,包括载有
    的头像 发表于 10-09 11:54 286次阅读
    ATA-7020高压放大器在<b class='flag-5'>微</b><b class='flag-5'>流</b>控3D<b class='flag-5'>细胞</b><b class='flag-5'>微</b>球培养中的应用

    宽带功率放大器基于控技术的细胞分选的应用

    实验名称:基于控技术的细胞分选和单细胞分析用于肿瘤药物敏感性研究研究方向:
    的头像 发表于 08-06 14:37 1952次阅读
    宽带功率放大器基于<b class='flag-5'>微</b><b class='flag-5'>流</b>控技术的<b class='flag-5'>细胞</b><b class='flag-5'>分选</b>的应用

    玻璃芯片前景分析

    们设计为允许在芯片内发生各种化学和生物反应。 芯片用于化学合成、药物发现、DNA 分析和
    的头像 发表于 07-21 15:05 554次阅读
    玻璃<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>前景分析

    ATA-2088高压放大器在细胞分选中的作用是什么

    细胞分选生物医学研究中至关重要的一步,它允许科学家们从混合细胞群中分离出特定类型的细胞,以进行进一步的研究。 高压放大器 在
    的头像 发表于 06-12 11:47 272次阅读
    ATA-2088高压放大器在<b class='flag-5'>细胞</b><b class='flag-5'>分选</b>中的作用是什么

    芯片技术的特点 芯片生物芯片的区别

    比如对于控免疫分析芯片系统,抗体的固定、对通道表面的封闭,显著影响免疫分析的灵敏度,是该类芯片需要重点解决的问题。
    的头像 发表于 03-15 10:36 3140次阅读
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>技术的特点 <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>与<b class='flag-5'>生物芯片</b>的区别

    基于极性电极阵列的芯片,可实现细胞可控、非接触三维旋转

    细胞的精确旋转在单细胞分析、药物发现和生物体分析等多个领域都具有重要意义。通过细胞的三维旋转,将有助于发现隐藏的遗传和结构细节,在显微手术、小生物
    的头像 发表于 03-07 10:53 1487次阅读
    基于<b class='flag-5'>双</b><b class='flag-5'>极性</b><b class='flag-5'>电极</b>阵列的<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>,可实现<b class='flag-5'>细胞</b>可控、非接触三维旋转

    安泰ATA-7050高压放大器在细胞分选中的应用

    细胞分选是一种用于分离和鉴定生物样本中特定类型细胞
    的头像 发表于 03-01 16:56 455次阅读
    安泰ATA-7050高压放大器在<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b><b class='flag-5'>分选</b>中的应用