0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ADI | 干货!较大限度提高∑-∆ ADC驱动器的性能

温柔WR 来源:温柔WR 作者:温柔WR 2024-02-26 09:52 次阅读

对于大多数模拟和混合信号数据采集系统设计工程师来说,设计无缓冲模数转换器(ADC)的外部前端需要有耐心和大量建议,因为它常常被视为一种艺术形式,是经过多年摸索掌握其窍门的古怪大师的保留地。对于没有经验的人来说,这是一个令人沮丧的反复尝试过程。大多数时候,由于相互关联的规格要求很多,迫使设计人员不得不进行很多权衡(和评估)才能达到最佳效果。

1

挑战

放大器级的设计由两个彼此相关的不同级组成,因此问题变得难以在数学上建模,特别是因为有非线性因素与这两级相关。第一步是选择用来缓冲传感器输出并驱动ADC输入的放大器。第二步是设计一个低通滤波器以降低输入带宽,从而最大限度地减少带外噪声。

理想的放大器是提供刚刚好的带宽以正确缓冲传感器或变送器产生的信号,而不会增加额外噪声,并且功耗为零,但实际放大器与此相距甚远。在大多数情况下,放大器规格将决定整体系统性能,尤其是在噪声、失真和功耗方面。为了更好地弄清楚问题,第一步是了解离散时间ADC的工作原理

离散时间ADC获得连续时间模拟信号的样本,然后将其转换为数字码。当信号被采样时,根据模拟转换器的类型,同一固有问题有两种不同的情况。

SARADC集成一个采样保持器,其基本上由一个开关和一个电容组成,作用是保持模拟信号直到转换完成,如图1所示。

wKgaomXbV8-APa6UAAClBUG0mwg086.png

图1. 采样保持电路图

离散时间∑-∆ADC或过采样转换器实现了类似的输入级,即具有一定内部电容的输入开关。∑-∆ADC的采样机制略有不同,但采样输入架构类似,使用开关和电容来保持模拟输入信号的副本。买元器件现货上唯样商城

在这两种情况下,开关都是用CMOS工艺实现,闭合时电阻为非零值,通常为几欧姆。此串联电阻与采样电容(pF级)的组合,意味着ADC输入带宽常常非常大,在许多情况下要远大于ADC采样频率。

2

带宽问题

对转换器来说,输入信号带宽是一个问题。在采样理论中,我们知道高于奈奎斯特频率(ADC采样频率的一半)的频率信号应被移除,否则这些频率信号将在目标频带中产生镜像或混叠。通常,噪声频谱中有相当一部分功率存在于ADC奈奎斯特频率以上的频带中。如果不处理这种噪声,它将混叠到奈奎斯特频率以下,增加本底噪声(如图2所示),使系统的动态范围明显降低。

wKgZomXbV8-AekVAAACldHOBMdg710.png

图2. 奈奎斯特折叠镜像

ADC输入信号带宽,以及缓冲器输出带宽,是第一个要解决的问题。为确保噪声不会向下混叠,必须限制ADC输入信号的带宽。这不是一个小问题。

通常,放大器的选择是基于大信号带宽(即压摆率)和增益带宽积的规格,以便应对输入信号的极端情况,这决定了ADC可以跟踪的最快变化的信号。

然而,放大器的有效噪声带宽等于小信号带宽(通常针对小于10mVp-p的信号而考虑),这常常比大信号带宽高出至少四到五倍。

换句话说,如果大信号规格是针对500kHz而选择,那么小信号带宽很容易就能达到2MHz或3MHz,这可能会导致ADC采集到大量噪声。因此,在将模拟信号输入ADC之前,应在外部限制小信号带宽,否则测得的噪声将是ADC数据手册规格的三到四倍。

wKgaomXbV9CAAC0tAACidlpLb6Q092.png

图3. 同相放大器配置

wKgZomXbV9GACF0tAABcR-LR_Zc970.png

表1. 放大器折合到输出端的噪声,RTO

记住,放大器产生的热噪声取决于放大器增益和总系统带宽。电路示例如图3所示,噪声源总结在表1中,其中:

T为温度(单位为K),

k为玻尔兹曼常数(1.38×1023J/K),

电阻值单位为Ω,

BW指小信号带宽。

以上公式表明,在ADC输入引脚之前增加一个具有足够衰减性能的低通滤波器以使采样噪声最小是很重要的,因为噪声与带宽的平方根成比例。通常,采用分立电阻和电容实现截止频率足够低的一阶低通滤波器可消除大部分宽带噪声。一阶低通滤波器还有一个额外的好处,即降低目标频带之外的任何其他较大信号的幅度,防止其被ADC采样而可能产生混叠。

但是,这还没完。ADC内部开关电阻和电容定义了模拟输入带宽,但由于输入信号的变化,会产生时域充放电循环。每次开关(连接到采样ADC电容的外部电路)闭合时,内部电容电压可能与先前储存在采样电容上的电压不同。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • adi
    adi
    +关注

    关注

    144

    文章

    45781

    浏览量

    243276
  • ADC驱动器
    +关注

    关注

    0

    文章

    34

    浏览量

    13902
收藏 人收藏

    评论

    相关推荐

    用于并行采样的EVADC同步转换,如何在最大化采样率的同时最大限度地减少抖动?

    在我的应用程序中,HSPDM 触发 EVADC 同时对两个通道进行采样。 我应该如何配置 EVADC 以最大限度地减少采样抖动并最大限度提高采样率? 在用户手册中,它提到 SSE=0,USC=0
    发表于 01-18 07:59

    Wi-SUN 可最大限度提高太阳能跟踪性能

    目前,随着光伏系统技术的进步,智能跟踪得以实现,可最大限度提高太阳光能的输出。不同于固定式电池板,太阳能光伏 (PV) 跟踪能够全天将太阳能电池板朝向太阳,并在恶劣天气下保护电池板免受冰雹或狂风
    的头像 发表于 01-07 08:38 398次阅读
    Wi-SUN 可最<b class='flag-5'>大限度</b>地<b class='flag-5'>提高</b>太阳能跟踪<b class='flag-5'>器</b>的<b class='flag-5'>性能</b>

    大限度提高高压转换的功率密度

    电子发烧友网站提供《最大限度提高高压转换的功率密度.doc》资料免费下载
    发表于 12-06 14:39 308次下载

    大限度保持系统低噪声

    大限度保持系统低噪声
    的头像 发表于 11-27 16:58 258次阅读
    最<b class='flag-5'>大限度</b>保持系统低噪声

    ADI-高速差分ADC驱动器设计指南

    作为应用工程师,我们经常遇到各种有关差分输入型高速模数转换(ADC)的驱动问题。事实上,选择正确的ADC驱动器和配置极具挑战性。为了使鲁棒
    发表于 11-27 08:31 2次下载
    <b class='flag-5'>ADI</b>-高速差分<b class='flag-5'>ADC</b><b class='flag-5'>驱动器</b>设计指南

    差分驱动ADC第二部分 ADC驱动器ADC匹配

    电子发烧友网站提供《差分驱动ADC第二部分 ADC驱动器ADC匹配.pdf》资料免费下载
    发表于 11-23 16:38 0次下载
    差分<b class='flag-5'>驱动</b><b class='flag-5'>ADC</b>第二部分 <b class='flag-5'>ADC</b><b class='flag-5'>驱动器</b>与<b class='flag-5'>ADC</b>匹配

    高速差分ADC驱动器的设计指南

    电子发烧友网站提供《高速差分ADC驱动器的设计指南.pdf》资料免费下载
    发表于 11-23 16:01 2次下载
    高速差分<b class='flag-5'>ADC</b><b class='flag-5'>驱动器</b>的设计指南

    高差分ADC驱动器的设计考虑

    电子发烧友网站提供《高差分ADC驱动器的设计考虑.pdf》资料免费下载
    发表于 11-23 14:33 0次下载
    高差分<b class='flag-5'>ADC</b><b class='flag-5'>驱动器</b>的设计考虑

    大限度提高∑-∆ ADC驱动器性能

    电子发烧友网站提供《最大限度提高∑-∆ ADC驱动器性能.pdf》资料免费下载
    发表于 11-22 09:19 0次下载
    最<b class='flag-5'>大限度</b><b class='flag-5'>提高</b>∑-∆ <b class='flag-5'>ADC</b><b class='flag-5'>驱动器</b>的<b class='flag-5'>性能</b>

    干货 | 氮化镓GaN驱动器的PCB设计策略概要

    干货 | 氮化镓GaN驱动器的PCB设计策略概要
    的头像 发表于 09-27 16:13 662次阅读
    <b class='flag-5'>干货</b> | 氮化镓GaN<b class='flag-5'>驱动器</b>的PCB设计策略概要

    较大限度提高∑-∆ ADC驱动器性能

    对于大多数模拟和混合信号数据采集系统设计工程师来说,设计无缓冲模数转换(ADC)的外部前端需要有耐心和大量建议,因为它常常被视为一种艺术形式,是经过多年摸索掌握其窍门的古怪大师的保留地。对于
    的头像 发表于 09-08 08:25 327次阅读
    <b class='flag-5'>较大限度</b><b class='flag-5'>提高</b>∑-∆ <b class='flag-5'>ADC</b><b class='flag-5'>驱动器</b>的<b class='flag-5'>性能</b>

    干货较大限度提高∑-∆ ADC驱动器性能

    对于大多数模拟和混合信号数据采集系统设计工程师来说,设计无缓冲模数转换(ADC)的外部前端需要有耐心和大量建议,因为它常常被视为一种艺术形式,是经过多年摸索掌握其窍门的古怪大师的保留地。对于
    的头像 发表于 09-05 12:57 653次阅读
    <b class='flag-5'>干货</b>!<b class='flag-5'>较大限度</b><b class='flag-5'>提高</b>∑-∆ <b class='flag-5'>ADC</b><b class='flag-5'>驱动器</b>的<b class='flag-5'>性能</b>

    较大限度提高∑-∆ ADC驱动器性能

    对于大多数模拟和混合信号数据采集系统设计工程师来说,设计无缓冲模数转换(ADC)的外部前端需要有耐心和大量建议,因为它常常被视为一种艺术形式,是经过多年摸索掌握其窍门的古怪大师的保留地。对于
    的头像 发表于 08-28 11:05 637次阅读
    <b class='flag-5'>较大限度</b><b class='flag-5'>提高</b>∑-∆ <b class='flag-5'>ADC</b><b class='flag-5'>驱动器</b>的<b class='flag-5'>性能</b>

    大限度提高数据库效率和性能VMware环境使用32G NVMe光纤渠道

    电子发烧友网站提供《最大限度提高数据库效率和性能VMware环境使用32G NVMe光纤渠道.pdf》资料免费下载
    发表于 08-07 10:10 0次下载
    最<b class='flag-5'>大限度</b>地<b class='flag-5'>提高</b>数据库效率和<b class='flag-5'>性能</b>VMware环境使用32G NVMe光纤渠道

    Cortex-M如何最大限度提高SoC设计的能效端点

    随着现代微控制和SoC变得越来越复杂,设计者面临着最大化能源效率,同时实现更高水平的集成。最大限度提高能量在低功耗SoC市场中,多个功率域的使用被广泛采用。在 同时,为了解决更高级别的集成,许多
    发表于 08-02 06:34