0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能、机器学习、深度学习之间有何关系?

无线深海 来源:中兴文档 2024-03-14 15:25 次阅读

说到近些年的火热名词,“人工智能”必须榜上有名。随着去年ChatGPT爆火出圈,“AI(Artificial Intelligence,人工智能)”屡次霸屏热搜榜,并被英国词典出版商柯林斯评为2023年的年度词。

除了“人工智能”,我们还经常听到“机器学习”、“深度学习”…… 这些术语都是啥意思?它们之间有什么关系呢?

人工智能——Artificial Intelligence

说到人工智能,大家的第一反应可能是科幻电影里那些拥有人类智慧的机器人,但实际上,人工智能可不仅仅是机器人哦。

人工智能是由约翰·麦卡锡(John McCarthy)于1956年提出来的,当时的定义是“制造智能机器的科学与工程”。 现在的人工智能是指“研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学”。 总结一下:人工智能就是让机器能够模拟人类的思维能力,让机器能像人一样去感知、思考甚至决策。 时至今日,人工智能已经不再是一门单纯的学科,而是涉及了计算机、心理学、语言学、逻辑学、哲学等多个学科的交叉领域。

人工智能看起来是高深的科技,实际上是一个覆盖范围很广的概念。我们的身边,早就有了各种人工智能,例如:自动驾驶、人脸识别、智能机器人、机器翻译等等。

面对多种多样的人工智能,我们按照人工智能的实力,可将其分成三类:

弱人工智能(Artificial Narrow Intelligence,ANI)

擅长于某个方面的人工智能,只能执行特定的任务。 例如,人脸识别系统就只能识别图像,你要是问它明天天气怎么样,它可不知道怎么回答。

强人工智能(Artificial General Intelligence,AGI)

类似于人类级别的人工智能,能够在多个领域表现出类似于人的智慧,能理解、学习和执行各种任务。 强人工智能也叫通用人工智能(Artificial General Intelligence,AGI)。 ChatGPT之所以是划时代的进展,就是因为它能写诗能做数学题还能编代码,已经基本可以被称作强人工智能了。

超人工智能(Artificial Superintelligence,ASI)

超越人类智慧的人工智能,在各个领域都比人类聪明,可以执行任何智力任务并且在许多方面超越人类。 尽管超人工智能在科幻作品中经常出现,但在实际中只是一个理论概念,目前还没有实现的可能。

说到这里,问大家一个问题,打败围棋世界冠军的AlphaGo属于什么人工智能呢?

机器学习——Machine Learning

前面提到,人工智能的目的是让机器能够像人一样思考并决策,到底如何实现呢?

回想一下,我们刚出生时基本上什么都不会,经过了几十年的学习,我们学会了各种知识、技能。 机器也是一样的,要让它会思考,就要让它先学习,从经验中总结规律,进而拥有一定的决策和辨别能力,这就是人工智能的核心——机器学习。

机器学习专门研究计算机怎样模拟或实现人类的学习行为,通过学习获取新的知识、技能,从而重新组织已有的知识结构,不断改善自身性能。

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、算法复杂度理论等多门学科。

acd9c2ce-e152-11ee-a297-92fbcf53809c.png

机器是怎样学习的呢?我们先来看一下人的学习过程:

上课:学习理论知识,进行知识输入

总结复习:通过复习,强化理解

梳理知识框架:整理知识,形成体系

课后作业:通过练习,进一步加深理解

每周测验:检查掌握情况

查漏补缺:改善学习方法

期末考试:检查最终学习成果

机器的学习过程也是类似的,包括以下7个步骤:

数据获取:收集相关的数据

数据处理:对数据进行转换,统一数据格式

模型选择:选择适合的算法

模型训练:使用数据训练模型,优化算法

模型评估:根据预测结果评估模型性能

模型调整:调整模型参数,优化模型性能

模型预测:对未知结果数据进行预测

简而言之,机器学习就是从数据中通过算法自动归纳逻辑或规则,并根据归纳的结果与新数据来进行预测。

举个例子,如果我们想让计算机看到狗时能判断出是狗,就需要给计算机展示大量狗的图片,同时告诉它这就是狗。 经过大量的训练,计算机会总结出一定的规律,当下次看到狗时,捕捉到对应的特征,得出“这是狗”的结论。 如果算法不够完善,可能会把猫误认为狗,这就需要计算机通过经验数据自动改进算法,从而增强预测能力。

按照学习方式,机器学习可分为以下四类:

监督学习

从有标记的数据中学习,即数据中包含自变量和因变量,通过学习已知的输入和输出数据来进行预测,如分类任务和回归任务。

分类任务:预测数据所属的类别,如垃圾邮件检测 、识别动植物类别等。

回归任务:根据先前观察到的数据预测数据,如房价预测,身高体重预测等。

无监督学习

分析没有标签的数据,即数据中只有自变量没有因变量,发现数据的规律,如聚类、降维等。

聚类:把相似的东西聚在一起,并不关注这类东西是什么,如客户分组。

降维:通过提取特征,将高维数据压缩用低维表示,如将汽车的里程数和使用年限合并为磨损值。

半监督学习

训练数据只有部分有标记,先使用无监督学习对数据进行处理,再用监督学习对模型进行训练和预测。 例如手机可以识别同一个人的照片(无监督学习),当把同一个人的照片打上标签后,之后新增的这个人的照片也会自动加上对应的标签(监督学习)。

强化学习

通过与环境进行交互,根据奖励或惩罚来优化算法,直到获得最大奖励,产生最优策略。例如扫地机器人撞到障碍物后,会优化清扫路径。

深度学习——Deep Learning

通过上面的了解,相信大家对机器学习已经不陌生了。那么深度学习又是个啥?跟机器学习有什么关系?

深度学习是机器学习领域的一个新的研究方向,是一种通过多层神经网络来学习和理解复杂数据的算法。 机器通过学习样本数据的深层表示来学习复杂任务,最终能够像人一样具有分析学习能力,能够识别文字、图像和声音等。

深度学习使用了神经网络结构,神经网络的长度称为模型的“深度”,因此基于神经网络的学习被称为“深度学习”。 神经网络模拟了人类大脑的神经元网络,神经元节点可以对数据进行处理和转换。通过多层神经网络,数据的特征可以被不断地提取和抽象,从而使机器能更好地解决各种问题。

ad0cdb3c-e152-11ee-a297-92fbcf53809c.png

典型的深度学习算法有以下四种类型:

卷积神经网络(Convolutional Neural Network,CNN):常用于图像识别和分类任务。

递归神经网络(Recurrent Neural Network,RNN):适用于处理序列数据,如自然语言处理。

长短期记忆网络(Long Short-Term Memory,LSTM):一种特殊的RNN结构,能够更好地处理长序列数据。

生成对抗网络(Generative Adversarial Network,GAN):用于生成新的数据,如图像、音频或文本。

在深度学习的加持下,人工智能得以快速发展,相信在不久的将来,我们将拥有一个全新的AI时代。

结束语

总结一下:

“人工智能”是一个广泛的概念,目的是让机器像人一样思考和执行任务。

“机器学习”是实现人工智能的一种方法,目的是从数据中学习规律,传统的机器学习需要人工确定数据特征。

“深度学习”是机器学习的一个特定分支,基于神经网络,能够自动学习数据特征。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    210

    文章

    28053

    浏览量

    205731
  • 人工智能
    +关注

    关注

    1789

    文章

    46545

    浏览量

    236822
  • 机器学习
    +关注

    关注

    66

    文章

    8337

    浏览量

    132255
  • 深度学习
    +关注

    关注

    73

    文章

    5456

    浏览量

    120853

原文标题:人工智能、机器学习、深度学习是啥关系?

文章出处:【微信号:wuxian_shenhai,微信公众号:无线深海】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    具身智能机器学习关系

    具身智能(Embodied Intelligence)和机器学习(Machine Learning)是人工智能领域的两个重要概念,它们之间
    的头像 发表于 10-27 10:33 204次阅读

    人工智能机器学习深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI很多技术,但其中一个很大的子集是机器学习——让算法从数据中
    发表于 10-24 17:22 2384次阅读
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>存在什么区别

    AI大模型与深度学习关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度
    的头像 发表于 10-23 15:25 252次阅读

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习深度
    发表于 10-14 09:12

    FPGA在人工智能中的应用哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度
    发表于 07-29 17:05

    人工智能机器学习深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度
    的头像 发表于 07-03 18:22 972次阅读

    人工智能深度学习的五大模型及其应用领域

    随着科技的飞速发展,人工智能(AI)技术特别是深度学习在各个领域展现出了强大的潜力和广泛的应用价值。深度学习作为人工智能的一个核心分支,通过
    的头像 发表于 07-03 18:20 3251次阅读

    深度学习与传统机器学习的对比

    人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管
    的头像 发表于 07-01 11:40 1069次阅读

    机器学习怎么进入人工智能

    人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是
    的头像 发表于 04-04 08:41 216次阅读

    FPGA在深度学习应用中或将取代GPU

    现场可编程门阵列 (FPGA) 解决了 GPU 在运行深度学习模型时面临的许多问题 在过去的十年里,人工智能的再一次兴起使显卡行业受益匪浅。英伟达 (Nvidia) 和 AMD 等公司的股价也大幅
    发表于 03-21 15:19

    人工智能机器学习的顶级开发板哪些?

    机器学习(ML)和人工智能(AI)不再局限于高端服务器或云平台。得益于集成电路(IC)和软件技术的新发展,在微型控制器和微型计算机上实现机器学习
    的头像 发表于 02-29 18:59 698次阅读
    <b class='flag-5'>人工智能</b>和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的顶级开发板<b class='flag-5'>有</b>哪些?

    人工智能机器学习深度学习之间什么关系呢?

    人工智能是由约翰·麦卡锡(John McCarthy)于1956年提出来的,当时的定义是“制造智能机器的科学与工程”。 现在的人工智能是指“研究、开发用于模拟、延伸和扩展人的
    发表于 02-26 11:34 349次阅读
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>、<b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>之间</b><b class='flag-5'>有</b>什么<b class='flag-5'>关系</b>呢?

    焊缝跟踪未来:人工智能机器学习的影响

    随着科技的不断进步,焊接行业也在迎来一场革命性的变革。焊缝跟踪技术,作为焊接领域的关键创新之一,正在经历着人工智能机器学习的引领下迎来更加智能、高效的发展。本文将深入探讨焊缝跟踪技术
    的头像 发表于 12-12 11:51 437次阅读

    深度学习人工智能中的 8 种常见应用

    深度学习简介深度学习人工智能(AI)的一个分支,它教神经网络学习和推理。近年来,它解决复杂问题
    的头像 发表于 12-01 08:27 3165次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>在<b class='flag-5'>人工智能</b>中的 8 种常见应用

    深度学习算法和传统机器视觉助力工业外观检测

    在很多人眼里,深度学习是一个非常神奇的技术,是人工智能的未来,是机器学习的圣杯。今天深视创新带您一起揭开他神秘的面纱,了解什么才是
    的头像 发表于 11-09 10:58 616次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>算法和传统<b class='flag-5'>机器</b>视觉助力工业外观检测