0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

具有增容和快充能力的Nb₂O₅分级微米花结构用于柔性钠离子微型电容器

清新电源 来源:nanomicroletters 2024-03-17 10:54 次阅读

研究背景

钠离子微型电容器结合了钠离子电池材料的高能量密度和超级电容器材料快速充放电的优点,可同时实现高能量密度和高功率密度,有效地弥合钠离子电池与超级电容器之间的鸿沟。然而,正、负极之间的电荷及反应动力学不匹配问题限制了高性能钠离子微型电容器的发展。因此,开发高容量且高倍率的储钠负极材料对于构筑钠离子微型电容器至关重要。

c3d2a850-e405-11ee-a297-92fbcf53809c.png

Hierarchically Structured Nb₂O₅ Microflowers with Enhanced Capacity and Fast-Charging Capability for Flexible Planar Sodium Ion Micro‑Supercapacitors

本文亮点

1.发展了静电自组装方法,开发出有序介孔Nb₂O₅超薄纳米片组装的微米花。

2.Nb₂O₅微米花丰富的孔结构利于电解质渗透钠离子传输,高导电性碳层提升电子传递动力学界面稳定性,使其展现出高的储钠容量(245 mAh/g)与快充性能(20 C)。

3.通过容量与动力学匹配策略,将Nb₂O₅微米花与活性炭构筑平面钠离子微型电容器,表现出高的面电容(41 mF/cm²)。而且,柔性钠离子微型电容器可为紫外传感器供电

内容简介

平面钠离子微型超级电容器(NIMSCs)具有高能量密度与功率密度特性,被认为一类有前景的用小型化电源于可穿戴和便携式微电子器件。然而,负极材料缓慢的反应动力学及低的容量限制了高性能钠离子微型电容器的发展。郑州大学马佳鑫与大连化物所吴忠帅等制备了一种碳包覆有序介孔Nb₂O₅超薄纳米片组装的分级结构微米花,提高储钠性能。丰富的孔结构利于电解质渗透和钠离子传输,高导电性碳层提升电子传递动力学与界面稳定性,使其在0.25 C下展现出245 mAh/g的高储钠容量。以Nb₂O₅为负极,活性炭为正极,构筑的平面钠离子微型电容器表现出3.5 V的高电压窗口和60.7 μWh/cm²高面能量密度。因此,这项工作利用了一种电极材料结构设计策略用于高性能钠离子微型电容器,在柔性微电子领域展现出大的应用前景。

图文导读

INb₂O₅微米花和平面钠离子微型电容器的制备

Nb₂O₅微米花的合成过程如图1a所示。首先,通过水热处理和后续的空气退火工艺相结合,得到了纷纷及结构的Nb₂O₅微米花。进一步,将聚多巴胺作为碳源和氮源,制备了具有超薄纳米片和丰富平面孔的碳包覆和氮掺杂Nb₂O₅微米花(NF@C-650)。将制备的Nb₂O₅微米花作为负极,活性炭(AC)作为正极,制备平面柔性钠离子微型电容器(图1b)。其中高导电性的石墨烯(EG)纳米片作为集流剂和导电添加剂,形成了长程有序的电子通道。在钠离子微型电容器上施加弯曲和扭曲应力,它们可以保持良好的结构完整性和机械柔性(图1c)。

c3e03e52-e405-11ee-a297-92fbcf53809c.png

图1. Nb₂O₅微米花及平面钠离子微型电容器的制备过程示意图。(a)水热法制备碳包覆Nb₂O₅微米的示意图。(b)高电子/离子传输平面钠离子微型电容器的制备过程。(c)平面钠离子微型电容器的光学照片。

II Nb₂O₅微米花的形貌表征

Nb₂O₅前驱体呈规则的微米花状结构,平均直径为~3µm(图2a)。当退火温度升高至650℃时,得到多孔富含氧空位的Nb₂O₅微米花(NF-650,NF@C-650)(图2b,c)。NF-650和NF@C-650均能很好地保留前驱体的微米花形貌,由多孔超薄纳米片组成,其厚度为~30 nm。TEM分析表明Nb₂O₅表面均匀地包裹了一层~5 nm的碳层(图2d-f)。由于聚多巴胺的包覆,氮原子被引入NF@C-650中(图2g)。

c3f648fa-e405-11ee-a297-92fbcf53809c.png

图2. Nb₂O₅微米花的形态表征。(a)Nb₂O₅前驱体、(b)NF-650和(c)NF@C-650的SEM图像。(d,e)NF@C-650在不同放大倍数下的TEM图像。(f)NF@C-650的HRTEM图像。(g)NF@C-650的STEM图像和对应的EDS映射。

III Nb₂O₅微米花的储钠性能

在0.01 ~ 3.0 V(vs. Na/Na⁺)电位范围内,评估Nb₂O₅微米花作为负极定的储钠性能(图3a)。NF@C-650在0.25 C(1 C=200 mA/g)下提供了245 mAh/g的高可逆容量(图3b),高于其他Nb₂O₅微米花在0.25 C下测试的容量,如NF-500(160 mAh/g),NF-650(193 mAh/g)和NF-800(156 mAh/g)。更重要的是,NF@C-650在0.5 C至20 C的不同电流密度下表现出优异的倍率性能(图3c),在20 C下保持122 mAh/g的高容量,其快速充电能力远远优于NF-500(36 mAh/g)、NF-650(52 mAh/g)和NF-800(27 mAh/g)。EIS分析发现(图3d),NF@C-650的电荷转移电阻(Rct)为217 Ω,低于NF-500(322 Ω)、NF-650(302 Ω)和NF-800(340 Ω)。结果表明,以多孔超薄微米花为结构单元的NF@C-650可以大大提高离子/电子转移动力学,从而使其具有优异的电化学性能。

此外,NF@C-650表现出优异的长期循环性能,在20 C下循环1000次后,提供~90 mAh/g的稳定容量,同时具有接近100%的高库仑效率,并保持NF@C-650良好的结构和花状形态(图3e),证明了分层碳包覆Nb₂O₅微米花的高度稳定性。综上所述,值得注意的是,具有均匀薄碳层的花状NF@C-650在Na离子存储方面表现出良好的电化学性能,主要是因为,(i)超薄纳米片具有短的离子/电子扩散途径,(ii)丰富的孔隙结构为快速电解质渗透和Na离子传输提供高活性表面积,(ⅲ)高导电性碳层提高了电子传递动力学,提高了界面稳定性。

c3fc2856-e405-11ee-a297-92fbcf53809c.png

图3. 在0.01~3.0 V(vs. Na/Na⁺)电势范围内Nb₂O₅微米花作为钠电负极的电化学性能。(a)NF@C-650在0.25 C和(b)0.25-20 C不同倍率下的GCD曲线。Nb₂O₅微米花的(c)倍率性能、(d)EIS图谱和(e)在20 C下的循环性能。

IV钠离子微型电容器的电化学性能

如图4a所示,以NF@C-650为负极,AC为正极,其中EG纳米片作为导电添加剂和集流体,进一步组装了柔性平面钠离子微型电容器。在高离子电导率NaBF₄基离子凝胶电解质(8.1 mS/cm)中,制备的钠离子微型电容器表现出3.5 V 的高电压窗口。从GCD斜坡型曲线可以看出,NF@C-650在负极发生Na离子嵌入/脱出和在AC正极处的发生BF⁴⁻阴离子吸附/脱附的复合电化学行为。这样的电池-电容器特征证明了法拉第NF@C-650和非法拉第型AC之间的成功匹配。钠离子微型电容器在20 μA/cm²下的面电容为12.1 mF/cm²,体积电容为9.8 F/cm³(图4c)。通过CV测量分析了离子反应动力学(图4d),计算出阳极峰和阴极峰的b值分别为0.836和0.977,表明NF@C-650//AC-NIMSCs中的电荷存储行为主要是表面伪电容性贡献(图4e)。

此外,电容比例定量计算发现,随着扫描速率从1 mV/s增加到10 mV/s,电容贡献从63.7%持续增加到83.5%(图4f)。上述结果表明,NF@C-650//AC-NIMSCs的高倍率性能主要来自于电容控制占主导地位的动力学行为。此外,NF@C-650//AC-NIMSCs表现出良好的长期循环稳定性(图4g)。如图4h所示,钠离子微型电容器的面能密度高达60.7 μWh/cm²,远超过了已有报道的微型超级电容器。

c409b692-e405-11ee-a297-92fbcf53809c.png

图4. NF@C-650//AC-NIMSCs的电化学性能。(a)离子凝胶基钠离子微型电容器的原理图和两个微电极的SEM图像。(b)在20 ~ 50 μA/cm²下钠离子微型电容器的GCD曲线。(c)根据20 ~ 500 μA/cm²的GCD曲线计算钠离子微型电容器的面电容和体电容。(d)在1 ~ 10 mV/s不同扫描速率下得到的CV曲线。(e)峰值电流与扫描速率的关系图。(f)在1-10 mV/s扫描速率下不同比例的电容贡献。(g)在300 μA/cm下钠离子微型电容器的循环性能。(h)钠离子微型电容器的Ragone图。

V钠离子微型电容器的柔性与集成

为了进一步满足柔性微电子的需求,作者评估了NF@C-650//AC-NIMSCs在0至180°不同弯曲角度下的电化学性能(图5a)。值得注意的是,在20 mV/s的扫描速率下,钠离子微型电容器的CV曲线变化不大,并且电容输出稳定,从平坦状态到180°的高弯曲角没有电容衰减(图5b),这表明NF@C-650//AC-NIMSCs具有优异的结构完整性和机械柔性。为了适应微电子对不同电压和电流的要求,作者构建了并联或串联的钠离子微型电容器来提高电容或电压输出(图5c,d)。单个和两个串联的钠离子微型电容器可以为紫外传感器供电(图5e,f),其中通过增加串联的钠离子微型电容器,响应电流成比例地增加。这些结果表明,钠离子微型电容器在柔性微电子器件中具有很大的应用前景,可以满足定制化柔性微电子的需求。

c415987c-e405-11ee-a297-92fbcf53809c.png

图5. NF@C-650//AC-NIMSCs的柔性和集成性能。(a)20 mV/s下不同弯曲状态下钠离子微型电容器的CV曲线。(b)不同弯曲角度下钠离子微型电容器的电容保持率。(c)串联(上)和并联(下)钠离子微型电容器示意图。(d)在75 μA/cm²下,2个钠离子微型电容器并联或串联的GCD曲线。(e)钠离子微型电容器-紫外传感器集成系统等效电路示意图。(f)紫外传感器的归一化响应电流。

VI总结

综上所述,作者开发了具有碳层包覆多孔和超薄纳米片组装的新型分层结构Nb₂O₅微米花,提高了储钠性能。NF@C-650优异的电化学性能归因于以下优点:(1)超薄纳米片缩短了离子/电子扩散路径;(2)丰富的孔隙结构促进了电解质的渗透和Na离子的运输;(3)Nb₂O₅表面均匀的碳层提高了导电性能和界面稳定性。通过NF@C-650负极与AC正极的匹配,得到的平面钠离子微型电容器具有41 mF/cm²的面电容、60.7 μWh/cm²的面能量密度、良好的循环稳定性和柔性。因此,这项工作表明,设计良好的电极结构提升反应动力学是构筑高性能平面混合离子微型超级电容器的有效途径。 




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2552

    文章

    51239

    浏览量

    754816
  • 电容器
    +关注

    关注

    64

    文章

    6238

    浏览量

    99886
  • 等效电路
    +关注

    关注

    6

    文章

    292

    浏览量

    32788
  • 电解质
    +关注

    关注

    6

    文章

    817

    浏览量

    20097
  • 钠离子电池
    +关注

    关注

    6

    文章

    220

    浏览量

    14748

原文标题:大连化物所吴忠帅等:具有增容和快充能力的Nb₂O₅分级微米花结构用于柔性钠离子微型电容器

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电容器寿命影响因素分析

    。 陶瓷电容器具有较长的寿命,但容量较小,适用于高频电路。 电解电容器 :容量大,但寿命相对较短,受温度和电压影响较大。 薄膜电容器
    的头像 发表于 11-15 10:49 651次阅读

    高频电容器的选择指南 如何测试电容器的好坏

    高频电容器的选择指南 1. 电容器的类型 高频电容器主要有陶瓷电容器、薄膜电容器和电解电容器等。
    的头像 发表于 11-15 10:40 352次阅读

    超级电容器和普通电容器的区别

    超级电容器(Supercapacitor)和普通电容器(Capacitor)都是电子设备中用于储存和释放电能的元件,但它们在结构、工作原理、性能参数和应用领域上有着显著的不同。 在现代
    的头像 发表于 09-27 10:27 1393次阅读

    钠离子电池是什么?可以跟超级电容器混合嘛

    钠离子电池是一种利用钠离子在正负极之间传递来存储和释放能量的二次电池。与锂离子电池类似,钠离子电池也是一种高能量密度、可循环充放电的电池技术。钠离子
    的头像 发表于 06-30 08:16 565次阅读
    <b class='flag-5'>钠离子</b>电池是什么?可以跟超级<b class='flag-5'>电容器</b>混合嘛

    离子超级电容器跟超级电容器哪一种更加好?

    离子超级电容器和普通超级电容器各有其优势和特点,具体哪一种更好取决于应用场景和需求。一般来说,锂离子超级电容器结合了锂
    的头像 发表于 06-30 08:15 1744次阅读
    锂<b class='flag-5'>离子</b>超级<b class='flag-5'>电容器</b>跟超级<b class='flag-5'>电容器</b>哪一种更加好?

    串联电容器和并联电容器的区别

    电容器是电子电路中常见的一种元件,它具有储存电荷的作用。在电路设计中,我们常常会遇到串联电容器和并联电容器这两种情况。串联电容器和并联
    的头像 发表于 05-16 14:14 4605次阅读

    电容器隔膜一般是什么 超级电容器隔膜的作用

    电容器隔膜是一种关键材料,用于电池和超级电容器等能量存储设备中,起到隔离正负极板、防止短路同时允许离子通过的作用。
    的头像 发表于 04-11 18:28 1995次阅读

    什么是锂离子超级电容器

    什么是锂离子超级电容器?锂离子超级电容器的基本原理。到如今,超级电容器技术已经比较成熟,被人所熟知,它是一种介于
    的头像 发表于 03-22 09:55 1780次阅读
    什么是锂<b class='flag-5'>离子</b>超级<b class='flag-5'>电容器</b>?

    什么是电化学电容器?电化学超级电容器有什么特点?

    什么是电化学电容器?电化学超级电容器有什么特点? 电化学电容器是一种储能装置,它利用电化学反应将电能转化为化学能,进而存储电荷。与传统的电容器相比,电化学
    的头像 发表于 03-05 16:30 1082次阅读

    电容器的作用及原理 电容器的功率是属于什么功率

    电容器是一种被广泛应用于电子电路中的被动元件。它具有存储电荷和能量的特性,可以在电子电路中起到多种作用。本文将详细介绍电容器的作用及其工作原理,并探讨
    的头像 发表于 02-14 17:35 5406次阅读

    薄膜电容器基本介绍

    薄膜电容器也称为塑料薄膜电容器。它使用塑料薄膜作为电介质。根据介质的不同,有许多类型的电容器,如电解质电容器、纸电容器、薄膜
    的头像 发表于 02-02 15:12 2545次阅读
    薄膜<b class='flag-5'>电容器</b>基本介绍

    法拉电容器怎么充电?为什么法拉电容器能够快速大容量充放电?

    充电的可行性以及法拉电容器能够快速大容量充放电的原因。 首先,我们来了解一下法拉电容器的基本原理。法拉电容器利用了电解质溶液中的离子在两个电极之间的移动来储存电能。它的
    的头像 发表于 02-02 13:44 2388次阅读

    超级电容器与锂离子电池的区别

    的区别。 1. 能量密度: 超级电容器的能量密度相对较低,一般为1-30Wh/kg,而锂离子电池的能量密度较高,可达到100-265Wh/kg。这意味着锂离子电池可以储存更多的能量,更适用于
    的头像 发表于 02-02 10:51 4576次阅读

    超级电容器与传统电容器的区别 影响超级电容器性能的因素

    超级电容器与传统电容器的区别 影响超级电容器性能的因素 在现代电子技术和能量储存领域,超级电容器(也称为超级电容)作为一种重要的储能装置备受
    的头像 发表于 02-02 10:28 3690次阅读

    自愈式电容器的概念 自愈式电容器相较于其他电容器的独特之处

    自愈式电容器的概念 自愈式电容器相较于其他电容器的独特之处  自愈式电容器是一种具有特殊结构和特
    的头像 发表于 01-17 11:36 1276次阅读