0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

纳芯微带保护功能的单通道隔离驱动NSI6611在电控系统中的运用介绍

纳芯微电子 来源:纳芯微电子 作者:纳芯微电子 2024-03-18 09:51 次阅读

主驱电控系统是新能源汽车的重要组成部分,本文将从电控系统的系统框图出发,介绍系统的各组成部分及其功能,并重点介绍纳芯微带保护功能的单通道隔离驱动NSI6611在电控系统中的运用,其米勒钳位功能能够很好地预防短路发生;DESAT功能能够在功率管发生短路时及时关断,保护功率管不受损坏,确保系统安全、稳定地运行。

1

主驱电控系统驱动和基于NSI6611的驱动板

1.1主驱电控系统的组成

主驱电控系统由低压电池、整车VCU、MCU高压电池和旋变三相电机等组成。如下图1所示,蓝色虚线内是主驱电机控制器部分,红色虚线内是本文将重点介绍的驱动板。

从功能上看,低压电池为系统提供低压供电,整车VCU通过CAN总线给电控系统发送指令,读取电控系统的状态;高压电池包提供高压供电,Flyback电路为IGBT驱动提供正负电压,驱动三相电机;LDO(低压差线性稳压器)为驱动芯片提供+5V供电。纳芯微高压隔离驱动NSI6611的作用是驱动IGBT和SiC模块;电流采样电路和旋变数字转换器用来控制电机运行。

6caec094-e44c-11ee-a297-92fbcf53809c.png

图1:主驱电控系统框图

在主驱电控系统中,纳芯微提供了各种芯片,包括CAN接口芯片、旋变数字转换器、电源芯片以及高压隔离驱动芯片。

1.2驱动电路板上的主要芯片

下图2是基于纳芯微单通道智能隔离驱动NSI6611设计的三相驱动电路板,蓝色框中的6个芯片均为NSI6611。此外,驱动板还使用了纳芯微的Flyback电源控制芯片NSR22401,为NSI6611高压驱动侧提供正负电压;LDO芯片NSR3x为NSI6611低压侧提供5V供电。

6cc4b7c8-e44c-11ee-a297-92fbcf53809c.png

图2:基于纳芯微NSI6611的驱动板

NSI6611是一款带保护功能的车规级高压隔离栅极驱动芯片,可以驱动IGBT和SiC,最高支持2121V峰值电压,驱动电流最大可达10A,不需要外加驱动电路;CMTI(共模瞬变抗扰度)高达150kV/μs。此外,其内部集成了主动米勒钳位和DESAT(退饱和)保护、软关断以及ASC(主动短路)功能,工作温度范围为-40℃至+125℃。

1.3 接口定义

如下图3所示,驱动板的左侧是驱动板与控制板的信号接口,包括由控制板提供PWM控制的6路输入信号;当NSI6611检测到IGBT过流或欠压时为控制板提供的6路FAULT输出信号;用来指示NSI6611供电是否欠压的6路Ready输出信号;以及分别控制3路高边和3路低边的2路RESET输入信号。驱动板的右侧是电源接口,供电电压范围是9V至16V。

6cefd76e-e44c-11ee-a297-92fbcf53809c.png

图3:驱动板接口定义

1.4 NSI6611驱动电路

下图4是NSI6611的驱动电路,左侧是低压控制侧,信号线上串联的100Ω电阻可以有效减小信号反射;由于Fault和Ready信号为内部Open Drain(开漏)结构,需要加一个5.1kΩ的上拉电阻。另外,PWM信号加1nF电容组成的RC电路可以滤除高频信号,VCC1加了一个0.1μF去偶电容。

右侧是高压驱动侧,并联了2个1206封装的栅极电阻,栅极有一个10k下拉电阻,栅极电容可根据不同应用需要进行调整,CLAMP引脚通过0Ω电阻连接到GATE。

6d01a7be-e44c-11ee-a297-92fbcf53809c.png

图4:NSI6611驱动电路

2

米勒效应和主动米勒钳位功能

2.1米勒效应

米勒效应是指在晶体管或场效应管中,由于输入电容和放大器增益的相互作用,导致放大器输出端的电容增大的现象。它不仅会增加开关延时,还可能引起寄生导通。

由于半导体的固有特性,IGBT内部存在着各种寄生电容,其中栅极和集电极之间的电容叫米勒电容。在测试中经常看到,栅极电压的上升并不是直接达到VCC电压,而是上升到一个电压平台维持一段时间后再上升。这个电压平台就是米勒平台,它是由米勒电容产生的。

6d1a280c-e44c-11ee-a297-92fbcf53809c.png

图5.1:米勒效应

米勒电容还可能引起下管误导通。通常,电机驱动经常要上下管配合使用,当Q2关断且Q1开启时,由于存在很高的dv/dt和米勒电容,就会产生一定的电流。其计算如公式:I = C * dv/dt。流过栅极电阻的电流会产生一个VGE电压,当这个电压超过Q2的开启阈值时,Q2就会开启,此时Q1已经处于开启状态,因此会引起上下管直通短路。

6d25318e-e44c-11ee-a297-92fbcf53809c.png

图5.2:米勒效应

2.2主动米勒钳位

为了解决米勒效应引起的上下管导通的问题,可以使用负压关断,但这会增加电源设计的复杂度,并增加BOM成本;第二个方案是使用带有米勒钳位功能的驱动芯片来控制IGBT的关断过程。

米勒钳位功能驱动芯片控制IGBT关断的过程如下图6所示,首先OUTL引脚打开,使栅极电压下降;当栅极电压降到CLAMP阈值以下时,开启CALMP引脚,使OULT引脚关闭。所形成的通路可以有效bypass栅极电阻,从而避免出现上下管导通的现象。值得注意的是,米勒钳位模块只在IGBT关闭的过程中才工作。

6d6190ac-e44c-11ee-a297-92fbcf53809c.png

图6:米勒钳位功能驱动芯片控制IGBT关断过程示意图

2.3功率器件的短路检测

IGBT和SiC器件的短路能力各不相同。在使用一个功率器件设计驱动系统之前,首先要了解其最大电压、最大电流、Rdson(导通电阻)等基本参数。短路能力也是值得重点关注的参数,因为设计短路保护时需要知道器件的短路特性。

以IGBT短路特性参数为例,在25℃时,其最大短路时间为6μs,也就是说,需要在6μs内及时关断IGBT。在短路电流达到4800A时,数值已经是正常工作电流的好几倍,一旦短路,瞬间会产生很大的热量,使结温急剧上升,如果不及时关断就会烧毁器件,甚至有起火的风险,这是系统设计中必须避免的。

通常IGBT的短路时间最大可达10μs,而SiC的短路时间仅为2~3μs,这给短路保护带来了很大的挑战,因此必须及时检测到短路并及时进行关断。

方法一是电流检测,在IGBT上串联一个电阻,或使用电流传感器直接检测过流情况,但这样做会增加很多成本,也会使电路系统变得更加复杂。

方法二是退饱和检测,也就是DESAT保护。如下图7所示,在VCE电压和集电极电流曲线图中可以看到,当VCE小于0.4V时,没有电流流过截止区;随着VCE电压增加,电流也会变大,出现饱和区,然后进入线性区,即退饱和区。

通常,IGBT在饱和区工作时,一旦发生短路就会进入退饱和区。可以看到,在饱和区VCE电压一般不会超过2V;如果进入退饱和区,VCE就会快速上升,甚至达到系统电压。退饱和检测就是通过检测VCE电压来检测IGBT是否进入了退饱和区。

6d700c18-e44c-11ee-a297-92fbcf53809c.png

图7:功率器件的短路检测示意图

3

DESAT保护功能

3.1DESAT检测外围电路配置和参数

DESAT检测由NSI6611及外置的DESAT电容、电阻和高压二极管组成。NSI6611芯片内部集成了500μA恒流源和比较器

6d815324-e44c-11ee-a297-92fbcf53809c.png

图8:DESAT检测外围电路配置和参数

当IGBT正常开启时,VCE电压很低,基本上在2V以下,这时二极管处于正向导通状态。其VDESAT的电压值等于电阻的压降加二极管的压降,再加上VCE电压。假设电阻的阻值是100Ω,二极管的正向压降是1.3V,VCE是2V,那么,根据图8中的公式可以得到:IGBT正常开启时,DESAT检测到的电压基本上小于3.35V。

当IGBT短路时,VCE电压会迅速上升,这时二极管处于关断状态,电流会流向DESAT电容,并为其充电。由于NSI6611的DESAT电流是500μA,DESAT阈值是9V,也就是说,需要匹配一个电容,以便在短路时间以内,以500μA将DESAT电容充电到9V。

假设DESAT电容是56pF,根据图8中的电容充电公式计算得到:电容的充电时间是1μs左右,再加上200ns的消隐时间和200ns的滤波时间,总的短路保护响应时间是1.4μs。这个时间不仅小于IGBT的安全短路时间,也小于SiC的安全短路时间。

3.2DESAT保护时序

下图9是DESAT保护时序图,从图中可以看出,第一步,GATE上升,DESAT开始消隐时间;第二步,消隐时间结束,DESAT电流开启,如果IGBT短路,二极管进入截止状态,DESAT电流为电容充电;第三步,当DESAT电容充到阈值9V时,开启DESAT保护的滤波时间;第四步,滤波时间结束,执行GATE关断。

6d994736-e44c-11ee-a297-92fbcf53809c.png

图9:DESAT保护时序图

3.3软关断功能

上文提到过,当检测到DESAT故障时即执行GATE关断。那么,是不是直接正常关断就可以了?其实不行。在发生短路时,IGBT的电流至少是正常电流的6~8倍,根据公式,电压等于系统的杂散电感乘以di/dt(V=Ls*di/dt),这么大的电流如果迅速关断,势必会产生很大的VCE电压,足以损坏IGBT。要减少VCE过冲只有两种途径,一是减少杂散电感,二是减小di/dt。

首先,由于器件的寄生参数、PCB走线、结构设计等不可避免地存在一定量的杂散电感;其次,对于减小di/dt,在电流一定的前提下,只有增加关断时间,也就是让IGBT慢慢关断,才能安全关断。NSI6611可以提供400mA的软关断,从而抑制VCE过冲,有效地解决器件保护的问题。

纳芯微带保护功能的单通道栅极驱动器NSI6611已通过AEC-Q100可靠性认证,并在多家车厂实现批量装车。

审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 功率管
    +关注

    关注

    3

    文章

    83

    浏览量

    21993
  • 电控系统
    +关注

    关注

    0

    文章

    136

    浏览量

    16125
  • 杂散电感
    +关注

    关注

    0

    文章

    28

    浏览量

    6285
  • 隔离驱动
    +关注

    关注

    2

    文章

    93

    浏览量

    5691
  • 纳芯微
    +关注

    关注

    2

    文章

    244

    浏览量

    14521

原文标题:带主动米勒钳位和DESAT保护功能的隔离驱动在汽车电控系统中的运用介绍

文章出处:【微信号:纳芯微电子,微信公众号:纳芯微电子】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    微带保护功能隔离驱动助力提升新能源汽车电控系统安全稳定

    主驱电控系统是新能源汽车的重要组成部分,本文将从电控系统系统框图出发,介绍
    的头像 发表于 09-26 09:42 2494次阅读
    <b class='flag-5'>纳</b><b class='flag-5'>芯</b><b class='flag-5'>微带</b><b class='flag-5'>保护</b><b class='flag-5'>功能</b>的<b class='flag-5'>隔离</b><b class='flag-5'>驱动</b>助力提升新能源汽车<b class='flag-5'>电控</b><b class='flag-5'>系统</b>安全稳定

    超强驱动能力,具备完善的保护功能微发布全新驱动NSi66x1A/NSi6601M

    2022年7月19日-单通道隔离式栅极驱动器两款新品NSi66x1A和
    发表于 07-20 15:23 1134次阅读
     超强<b class='flag-5'>驱动</b>能力,具备完善的<b class='flag-5'>保护</b><b class='flag-5'>功能</b>!<b class='flag-5'>纳</b><b class='flag-5'>芯</b>微发布全新<b class='flag-5'>驱动</b>器<b class='flag-5'>NSi</b>66x1A/<b class='flag-5'>NSi</b>6601M

    超强驱动能力,具备完善的保护功能微发布全新驱动NSi66x1A/NSi6601M

    2022年7月19日-单通道隔离式栅极驱动器两款新品NSi66x1A和
    发表于 07-26 13:38 941次阅读
    超强<b class='flag-5'>驱动</b>能力,具备完善的<b class='flag-5'>保护</b><b class='flag-5'>功能</b>!<b class='flag-5'>纳</b><b class='flag-5'>芯</b>微发布全新<b class='flag-5'>驱动</b>器<b class='flag-5'>NSi</b>66x1A/<b class='flag-5'>NSi</b>6601M

    微集成隔离电源3CH数字隔离器NIRSP31

    、高可靠性、高性价比的隔离电源方案。本文介绍微集成隔离电源3CH数字隔离方案,将有效助力开
    发表于 02-15 11:40

    单通道隔离式栅极驱动介绍

    单通道隔离式栅极驱动器两款新品NSi66x1A和NSi
    的头像 发表于 07-20 13:20 3155次阅读
    <b class='flag-5'>纳</b><b class='flag-5'>芯</b>微<b class='flag-5'>单通道</b><b class='flag-5'>隔离</b>式栅极<b class='flag-5'>驱动</b>器<b class='flag-5'>介绍</b>

    单通道隔离式栅极驱动NSi66x1A和NSi6601M发布

    单通道隔离式栅极驱动器两款新品NSi66x1A和NSi
    的头像 发表于 07-22 16:04 2734次阅读

    微推出集成限流功能的四通道/八通道数字输入(DI)隔离NSi860x

    微(NOVOSENSE)推出了全新四通道/八通道(4CH/8CH)数字输入(DI)隔离NSi
    的头像 发表于 12-27 14:22 1696次阅读

    微全新推出光耦兼容的智能隔离单管驱动NSi68515

    单通道智能隔离式栅极驱动NSi68515,专为驱动
    的头像 发表于 02-23 16:22 1509次阅读

    NSi66x1A带保护功能的智能隔离单管驱动

    NSi66x1A带保护功能的智能隔离单管驱动
    的头像 发表于 07-11 14:24 974次阅读
    <b class='flag-5'>纳</b><b class='flag-5'>芯</b>微<b class='flag-5'>NSi</b>66x1A带<b class='flag-5'>保护</b><b class='flag-5'>功能</b>的智能<b class='flag-5'>隔离</b>单管<b class='flag-5'>驱动</b>器

    NSi6601单通道隔离式栅极驱动器支持米勒钳位兼容替代TI品牌UCC5350/ON的NCD5708

    单通道隔离式栅极驱动器支持米勒钳位NSi6601M是单通道隔离式栅极
    发表于 10-31 13:31 6次下载

    NSI6801 经济型光耦兼容的单通道隔离式栅极驱动器兼容替代TLP5751

    经济型光耦兼容的单通道隔离式栅极驱动微全新推出第二代产品NSi6801x系列,包含
    发表于 10-31 13:54 4次下载

    微推出NSI22C1x系列隔离式比较器,助力打造更可靠的工业电机驱动系统

    微 今日宣布推出基于电容隔离技术的隔离式比较器NSI22C1x系列,该系列包括用于过压和过温保护
    的头像 发表于 02-20 13:57 558次阅读
    <b class='flag-5'>纳</b><b class='flag-5'>芯</b>微推出<b class='flag-5'>NSI</b>22C1x系列<b class='flag-5'>隔离</b>式比较器,助力打造更可靠的工业电机<b class='flag-5'>驱动</b><b class='flag-5'>系统</b>

    微电子推出基于电容隔离技术的隔离式比较器NSI22C1x系列

    微今日宣布推出基于电容隔离技术的隔离式比较器NSI22C1x系列,该系列包括用于过压和过温保护
    的头像 发表于 02-20 16:29 689次阅读
    <b class='flag-5'>纳</b><b class='flag-5'>芯</b>微电子推出基于电容<b class='flag-5'>隔离</b>技术的<b class='flag-5'>隔离</b>式比较器<b class='flag-5'>NSI</b>22C1x系列

    微发布基于电容隔离技术的NSI22C1x系列隔离式比较器

    近日,微宣布推出基于电容隔离技术的隔离式比较器NSI22C1x系列,这一创新产品的发布为工业电机驱动
    的头像 发表于 03-11 10:52 783次阅读

    微推出智能隔离栅极驱动NSI67X0系列

    微正式推出具有隔离模拟采样功能的智能隔离驱动 NSI
    的头像 发表于 12-09 14:02 273次阅读
    <b class='flag-5'>纳</b><b class='flag-5'>芯</b>微推出智能<b class='flag-5'>隔离</b>栅极<b class='flag-5'>驱动</b>器<b class='flag-5'>NSI</b>67X0系列