0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

富锂锰正极电压衰减机理终于讲明白了!

清新电源 来源:能源学人 2024-03-22 09:27 次阅读

【研究背景】

锂离子电池正极材料中,具有超高容量的富锂材料正极一直备受关注,但其循环过程中快速的电压衰减导致电池能量密度降低,严重阻碍了进一步商业化应用。先前的研究表明,电压衰减可能来与低价过渡金属的氧化还原、锂离子扩散系数降低、充放电过程中的结构变化相关;但低价金属的电化学补偿和整体电压衰减的机理尚不明确,离子扩散系数的动力学效应难以解释热力学的电压损失,循环过程中的结构变化缺少直接的实验证据,使得电压衰减的底层逻辑不甚清晰。

【工作介绍】

近日,牛津大学的Robert A. House和Peter G. Bruce团队等人通过高分辨率共振非弹性X射线散射(RIXS)光谱直接跟踪并定量测量了Li1.2Ni0.13Co0.13Mn0.54O2循环过程中俘获的O2(trapped O2)。该团队发现,随着电池循环次数增加,充电时俘获的O2逐渐减少,同时放电时O2/ O ^2-^ 的还原难度提升。核磁共振(NMR)数据表明,用于俘获O2的体相孔隙随充放电过程不断增生,孔隙表面形成了绝缘的Li-O ^2-^ 区域,阻碍了电子传输。^129^Xe的核磁共振谱和比表面积测试(BET)显示,循环过程中材料体相孔隙不断增加扩大,颗粒的微观结构遭到破坏,最终破裂并释放氧气。综上,电化学惰性的O2在颗粒内累积或从近表面的孔隙中释放,导致了富锂材料在3V以上平台的O ^2-^ / O2氧化还原容量减少,解释了观察到的电压衰减现象。

该文章以“Trapped O2 and the origin of voltage fade in layered Li-rich cathodes”为题发表在国际顶级期刊Nature Materisls上,John-Joseph Marie为本文的第一作者。

【核心内容】

Li1.2Ni0.13Co0.13Mn0.54O2的结构属于O3型堆叠,TM和Li离子在TM层中呈蜂窝状排列。图1c中,循环过程中放电曲线低电压下的容量比例不断升高,说明材料存在明显的电压衰减。

wKgZomX83xmAVfKaAANLFz8woBk016.jpg

图1 Li1.2Mn0.54Co0.13Ni0.13O2结构信息和电化学性能。(a)结构为R-3m,具有层状结构,Li/Ni和Co/Mn形成蜂窝状平面内有序。(b)粉末衍射与精修数据。(c)2.0 V~4.8 V、100 mA g^−1^循环100圈充放电曲线。

高分辨RIXS扫描光谱能够清晰表现循环过程中O2分子的状态,与其相关的两个主要特征是约8 eV的能量损失特征以及从0 eV弹性RIXS峰传播的一系列振动级数峰。在第2圈和第100圈的不同充电状态下,对样品的不同位置进行多次RIXS扫描,并绘制位于531.5 eV的能量损失图(图2 b,e)和基于振动峰积分面积的O2分子信号强度(图2c,f)。对比第2圈循环充电、放电过程中均出现O2含量的变化,第100圈循环中放电过程O2/ O ^2-^ 的还原主要发生在3V以上,3V以下的容量主要依靠低价过渡金属的还原。

wKgZomX83xmAdOvLAAPEkBZfWQM513.jpg

图2 Li1.2Mn0.54Co0.13Ni0.13O2第2圈和第100圈循环对比。(a)(d)分别为第2圈和第100圈循环曲线;(b)(e)为第2圈和第100圈循环在531.5 eV的RIXS光谱;通过主成分分析RIXS光谱确定第2圈(c)和第100圈(f)O2分子信号的强度变化,数据样本量为15。

O2信号随循环的变化如图3所示。从第2圈到第100圈,充电状态下俘获O2总体减少约44%,放电态剩余O2含量略微增长,O的氧化还原活性从每单位提供0.48 e ^−^ 下降到0.22 e ^−^ ,其余容量由过渡金属提供。溢出的O2和俘获但电化学非活性O2降低了Li1.2Ni0.13Co0.13Mn0.54O2材料在3V以上的容量,导致电压衰退和容量损失。

wKgaomX83xiAFlHmAACV5A7ULPw728.jpg

图3 O2信号强度随循环次数变化。随着循环次数增加,充电状态(FC)O2信号强度减弱,放电状态(FD)O2略微增长。

通过环形暗场扫描透射电子显微图像(ADF-STEM)能够看到循环过程中孔隙的生成和增大。氙的核磁共振光谱(^129^Xe NMR)中的化学位移表示材料中孔隙大小,图4e 显示,循环100圈后存在直径大于17nm的孔隙,与STEM、BET实验结果相符合。^6^Li、^17^O的固态魔角旋转(solid-state magic angle spinning, MAS)NMR测试用以探测Li、O的化学环境。初始状态下Li NMR中1500 ppm和400-900 ppm峰值分别代表过渡金属层中的Li和碱金属层的Li;循环后峰逐渐展宽,表明局部无序、抗磁性的富Li区域形成。^17^O MAS NMR 的峰值在循环过程中向高频区域位移,证明过渡金属(TM)氧化物形成。^6^Li和^17^O核磁共振谱表明,材料在长周期循环中分离成抗磁性富Li团簇区域(Li2O)和高顺磁性富TM区域。

wKgaomX83xmAMDlAAAJ04XI_5os399.jpg

图4 循环过程中的空隙表征。(a-c)不同循环次数的ADF-STEM图像。(d-e)^129^Xe NMR实验及结果。橙色区域表示100圈循环后存在直径为17 nm的开放空洞。(f)^6^Li NMR图谱及(g)^17^O NMR图谱表明循环中形成了较大的抗磁性富锂区。

不同弛豫速度的NMR谱图能够体现不同信息,获得更精确的实验结果。对比第100圈循环充放电前后,快速弛豫的 ^17^O NMR光谱(2ms)能够增强顺磁性氧气的信号(图5a),放电状态下仍有部分氧气残存,与RIXS结果相一致;慢弛豫光谱(图5b)显示,放电态出现的较强的Li–O ^2−^ 信号,证明随着Li离子插入大量富Li团簇区域(Li2O)形成。

wKgaomX83xmAUdF8AAIxNX3TNWo647.jpg

图5 100次循环后快弛豫(a)、慢弛豫(b)的^17^O NMR光谱。(c)富Li团簇区域(Li2O)形成形成示意图。

O2的流失和不可逆的氧化还原造成了富锂锰材料严重的电压衰减。循环初期,充电过程中O ^2−^ 氧化成O2并被束缚在小的体相孔隙中,放电状态下O2完全还原成O ^2−^ 。随着充放电进一步进行,体系中的孔隙不断增生扩大,孔隙附近绝缘Li-O ^2−^ 区域的形成增大了O2/O ^2−^ 还原难度,近表面开放空隙溢出的O2造成部分容量损失。RIXS和NMR的实验证据表明反应位于3V以上的 O ^2−^ /O2可逆性降低,对应于O氧化还原容量占比从55%(第2圈循环)下降到的34%(第100圈循环),导致容量降低和电压衰退。

wKgZomX83xiADf9qAAPPnOEIVwM775.jpg

图6 电压衰减机理。(a-b)第2圈循环中,可逆的O的氧化还原在体相小空隙中反应,O2分子在放电时完全还原为O ^2−^ ,形成小的抗磁性富锂区。(c-d)第100圈循环中,TM迁移导致团簇聚集和粗化,更大、更多的空隙导致颗粒破裂和氧气释放,O2分子难以完全还原。

【结论展望】

在富锂材料Li1.2Ni0.13Co0.13Mn0.54O2中,一方面充电时形成的O2被困在粒子内部的封闭孔隙中,循环中孔隙的生长、边缘绝缘层厚度的增加导致电子在O2和孔隙边缘间的隧穿变得更加困难;另一方面近表面的孔隙造成颗粒的破裂和O2的释放。在两种机制的共同作用下,在长时间的循环过程中参与电荷补偿反应的O2的逐渐损失,宏观表现为材料的电压衰减。该现象将结构重组、孔隙增生和过渡金属离子还原的观察结果结合在一起,形成了一个单一的机制。在未来,电压衰减的抑制策略应侧重于体相改性和抑制的O2形成。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3215

    浏览量

    77541
  • 电池充放电
    +关注

    关注

    1

    文章

    164

    浏览量

    9023
  • 电压衰减器
    +关注

    关注

    1

    文章

    5

    浏览量

    4763

原文标题:牛津大学Peter G. Bruce课题组最新Nature Materials研究:富锂锰正极电压衰减机理终于讲明白了!

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    探究全电池容量衰减的根本原因

    高压尖晶石正极LiNi0.5Mn1.5O4(LNMO)具有高能量密度和低成本的优势,是高性能电池的理想正极。然而,全电池中的容量快速衰减问题限制其商业化应用。这归因于活性
    的头像 发表于 11-11 16:26 348次阅读
    探究全电池容量<b class='flag-5'>衰减</b>的根本原因

    高负载质量下MnO2正极材料容量衰减问题的解决方案

    水系锌离子电池(AZIBs)因其高理论容量、高安全性和低成本等优势被广泛关注。氧化物因其较高的工作电压、高理论容量和低成本、制备简单等优点,是最有希望在水系锌离子电池中实际应用的正极材料之一。然而
    的头像 发表于 10-24 16:30 339次阅读
    高负载质量下MnO2<b class='flag-5'>正极</b>材料容量<b class='flag-5'>衰减</b>问题的解决方案

    物联网行业中的常用电池方案_电池

    1.电池简介 电池:全称-二氧化锰电池(Lithium-manganese dioxide、Li-MnO2)。
    的头像 发表于 09-25 11:20 334次阅读
    物联网行业中的常用电池方案_<b class='flag-5'>锂</b><b class='flag-5'>锰</b>电池

    磷酸铁正极材料吗

    磷酸铁是一种非常重要的锂电池正极材料。它具有独特的橄榄石型结构,由铁、磷和氧组成,其中锂离子在充放电过程中嵌入和脱出。
    的头像 发表于 05-19 14:45 894次阅读

    龙蟠科技拟引入2.85亿元战投,加速磷酸铁正极材料布局

    龙蟠科技近期宣布计划引入2.85亿元的战略投资,以加速其在磷酸铁正极材料领域的布局。
    的头像 发表于 05-16 11:01 517次阅读

    电压探头衰减比对量程的影响

    在电子测量和测试领域,示波器是一种常用的仪器,用于观察各种电信号的波形。为了能够准确地测量不同幅度的电压,示波器通常需要配合不同类型的电压探头使用。电压探头的衰减比是衡量探头性能的关键
    的头像 发表于 05-13 11:00 843次阅读
    <b class='flag-5'>电压</b>探头<b class='flag-5'>衰减</b>比对量程的影响

    用于延长高压高Ni三元金属电池寿命的无氟醚基电解液

    采用镍(Ni)层状氧化物正极搭配金属(Li)负极的金属电池(LMBs)的能量密度有望达到传统锂离子电池的两倍,因此可极大缓解电动汽车的“里程焦虑”。
    的头像 发表于 04-30 09:08 1019次阅读
    用于延长高压高Ni三元<b class='flag-5'>锂</b>金属电池寿命的无氟醚基电解液

    干货 | 终于有人把「特性阻抗、反射、阻抗匹配」讲明白

    认识特性阻抗 电阻是一个实实在在的物理元器件,通过欧姆定律我们可以知道,电压、电流和电阻三者之间的关系,U=I*R。 我们通过一个具体的电路来分析这三者之间的具体关系,请看下面的一张最简单的电路图
    的头像 发表于 04-29 09:50 2049次阅读
    干货 | <b class='flag-5'>终于</b>有人把「特性阻抗、反射、阻抗匹配」<b class='flag-5'>讲明白</b><b class='flag-5'>了</b>

    开发高性能锂离子电池正极的掺杂策略

    镍NCM阴极固有的化学和结构不稳定性导致容量快速衰减、热不稳定性、气体演化和安全等问题。
    的头像 发表于 04-24 09:04 1449次阅读
    开发高性能锂离子电池<b class='flag-5'>富</b>镍<b class='flag-5'>正极</b>的掺杂策略

    利用太阳辐射直接修复正极

    (Li)和(Mn)层状氧化物材料(LMRO)因其高能量密度而被认为是最有前途的下一代电池正极材料之一。
    的头像 发表于 03-11 09:12 933次阅读
    利用太阳辐射直接修复<b class='flag-5'>富</b><b class='flag-5'>锂</b><b class='flag-5'>富</b><b class='flag-5'>锰</b><b class='flag-5'>正极</b>!

    三元锂离子电池优缺点分析

    ,三元材料做正极的电池相对于钴酸锂电池安全性高,但是电压太低,用在手机上(手机截止电压一般在3.0V左右)会有明显的容量不足的感觉。 三元聚合物锂电池是指正极材料使用
    的头像 发表于 02-01 09:42 852次阅读
    三元锂离子电池优缺点分析

    亚电池和电池的区别

    是二氧化锰。开路电压为3.0v,终止电压为1.8v。 电池是目前最常见的纽扣电池类型,最初被称为水银电池。然而,由于污染问题和容量的逐
    的头像 发表于 01-16 10:30 2201次阅读

    固态电池竞争趋向白热化 半固态电池量产先行

    固态电解质有更宽的电压窗口(可达5V以上),因此能兼容更高比容量的正负极材料,如超高镍正极正极
    发表于 01-12 09:45 414次阅读
    固态电池竞争趋向白热化 半固态电池量产先行

    电感的Q值是什么?几句话,给你讲明白

    电感的Q值是什么?几句话,给你讲明白
    的头像 发表于 12-08 16:57 1156次阅读
    电感的Q值是什么?几句话,给你<b class='flag-5'>讲明白</b>

    开关模式下的电源电流如何检测?这12个电路&amp;10个知识点讲明白

    开关模式下的电源电流如何检测?这12个电路&10个知识点讲明白
    的头像 发表于 12-06 16:04 759次阅读
    开关模式下的电源电流如何检测?这12个电路&amp;10个知识点<b class='flag-5'>讲明白</b><b class='flag-5'>了</b>