0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于FPGA的TMDS编码简析

FPGA技术江湖 来源:FPGA技术江湖 2024-03-26 09:03 次阅读

在我们之前的学习中,了解到HDMI是一种全数字化视频和声音发送接口,可以发送音频以及视频信号。HDMI向下兼容DVI,DVI只能传输视频信号。HDMI和DVI接口协议在物理层均使用TMDS标准来传输音频或视频信号,接下来就着重了解一下TMDS编码。

TMDS(最小化传输差分信号)中,有四个通道,其中包含了三个数据通道和一个时钟通道。其中数据通道用来传输颜色、音频、控制等信号。HDMI默认使用RGB(RGB888)三个数据通道,当然也可以是亮度和色度信息(YCrCb,44或者42)。

681ba772-eb09-11ee-a297-92fbcf53809c.png

上图为HDMI的链接框架;

通道0传输的数据为:B分量的视频数据、行场同步信号、音频信号。

通道0传输的数据为:G分量的视频数据、控制信号、音频信号。

通道0传输的数据为:R分量的视频数据、控制信号、音频信号。

不同的数据在TMDS数据通道中在三种不同的周期中发送。

682af9de-eb09-11ee-a297-92fbcf53809c.png

在TMDS传输标准中,不论是视频信号、控制信号还是辅助信号,都是以10bit的数据传输,所以需要对这三个信号进行编码,分别采用不同的编码方式。

683e9c82-eb09-11ee-a297-92fbcf53809c.png

在此,我们着重说一下视频编码,在Xilinx官方给出的一个编码示意图中,我们可以清楚整个的编码流程:

684ab846-eb09-11ee-a297-92fbcf53809c.png

图中也体现出了控制信号的编码方式:

6867d462-eb09-11ee-a297-92fbcf53809c.png

会对应特定的四个值中的一个。

编码如下:

1    `timescale 1 ps / 1ps
2  
3    module dvi_encoder (
4      input            clkin,    // pixel clock input
5      input            rstin,    // async. reset input (active high)
6      input      [7:0] din,      // data inputs: expect registered
7      input            c0,       // c0 input
8      input            c1,       // c1 input
9      input            de,       // de input
10     output reg [9:0] dout      // data outputs
11   );
12 
13     ////////////////////////////////////////////////////////////
14     // Counting number of 1s and 0s for each incoming pixel
15     // component. Pipe line the result.
16     // Register Data Input so it matches the pipe lined adder
17     // output
18     ////////////////////////////////////////////////////////////
19     reg [3:0] n1d; //number of 1s in din
20     reg [7:0] din_q;
21 
22   //计算像素数据中“1”的个数
23     always @ (posedge clkin) begin
24     n1d <=#1 din[0] + din[1] + din[2] + din[3] + din[4] + din[5] + din[6] + din[7];
25 
26     din_q <=#1 din;
27     end
28 
29     ///////////////////////////////////////////////////////
30     // Stage 1: 8 bit -> 9 bit
31     // Refer to DVI 1.0 Specification, page 29, Figure 3-5
32     ///////////////////////////////////////////////////////
33     wire decision1;
34 
35     assign decision1 = (n1d > 4'h4) | ((n1d == 4'h4) & (din_q[0] == 1'b0));
36 
37     wire [8:0] q_m;
38     assign q_m[0] = din_q[0];
39     assign q_m[1] = (decision1) ? (q_m[0] ^~ din_q[1]) : (q_m[0] ^ din_q[1]);
40     assign q_m[2] = (decision1) ? (q_m[1] ^~ din_q[2]) : (q_m[1] ^ din_q[2]);
41     assign q_m[3] = (decision1) ? (q_m[2] ^~ din_q[3]) : (q_m[2] ^ din_q[3]);
42     assign q_m[4] = (decision1) ? (q_m[3] ^~ din_q[4]) : (q_m[3] ^ din_q[4]);
43     assign q_m[5] = (decision1) ? (q_m[4] ^~ din_q[5]) : (q_m[4] ^ din_q[5]);
44     assign q_m[6] = (decision1) ? (q_m[5] ^~ din_q[6]) : (q_m[5] ^ din_q[6]);
45     assign q_m[7] = (decision1) ? (q_m[6] ^~ din_q[7]) : (q_m[6] ^ din_q[7]);
46     assign q_m[8] = (decision1) ? 1'b0 : 1'b1;
47 
48     /////////////////////////////////////////////////////////
49     // Stage 2: 9 bit -> 10 bit
50     // Refer to DVI 1.0 Specification, page 29, Figure 3-5
51     /////////////////////////////////////////////////////////
52     reg [3:0] n1q_m, n0q_m; // number of 1s and 0s for q_m
53     always @ (posedge clkin) begin
54     n1q_m  <=#1 q_m[0] + q_m[1] + q_m[2] + q_m[3] + q_m[4] + q_m[5] + q_m[6] + q_m[7];
55     n0q_m  <=#1 4'h8 - (q_m[0] + q_m[1] + q_m[2] + q_m[3] + q_m[4] + q_m[5] + q_m[6] + q_m[7]);
56     end
57 
58     parameter CTRLTOKEN0 = 10'b1101010100;
59     parameter CTRLTOKEN1 = 10'b0010101011;
60     parameter CTRLTOKEN2 = 10'b0101010100;
61     parameter CTRLTOKEN3 = 10'b1010101011;
62 
63     reg [4:0] cnt; //disparity counter, MSB is the sign bit
64     wire decision2, decision3;
65 
66     assign decision2 = (cnt == 5'h0) | (n1q_m == n0q_m);
67     /////////////////////////////////////////////////////////////////////////
68     // [(cnt > 0) and (N1q_m > N0q_m)] or [(cnt < 0) and (N0q_m > N1q_m)]
69     /////////////////////////////////////////////////////////////////////////
70     assign decision3 = (~cnt[4] & (n1q_m > n0q_m)) | (cnt[4] & (n0q_m > n1q_m));
71 
72     ////////////////////////////////////
73     // pipe line alignment
74     ////////////////////////////////////
75     reg       de_q, de_reg;
76     reg       c0_q, c1_q;
77     reg       c0_reg, c1_reg;
78     reg [8:0] q_m_reg;
79 
80     always @ (posedge clkin) begin
81     de_q    <=#1 de;
82     de_reg  <=#1 de_q;
83     
84     c0_q    <=#1 c0;
85     c0_reg  <=#1 c0_q;
86     c1_q    <=#1 c1;
87     c1_reg  <=#1 c1_q;
88 
89     q_m_reg <=#1 q_m;
90     end
91 
92     ///////////////////////////////
93     // 10-bit out
94     // disparity counter
95     ///////////////////////////////
96     always @ (posedge clkin or posedge rstin) begin
97     if(rstin) begin
98       dout <= 10'h0;
99       cnt <= 5'h0;
100    end else begin
101      if (de_reg) begin
102      if(decision2) begin
103        dout[9]   <=#1 ~q_m_reg[8]; 
104        dout[8]   <=#1 q_m_reg[8]; 
105        dout[7:0] <=#1 (q_m_reg[8]) ? q_m_reg[7:0] : ~q_m_reg[7:0];
106
107        cnt <=#1 (~q_m_reg[8]) ? (cnt + n0q_m - n1q_m) : (cnt + n1q_m - n0q_m);
108      end else begin
109        if(decision3) begin
110        dout[9]   <=#1 1'b1;
111        dout[8]   <=#1 q_m_reg[8];
112        dout[7:0] <=#1 ~q_m_reg[7:0];
113
114        cnt <=#1 cnt + {q_m_reg[8], 1'b0} + (n0q_m - n1q_m);
115        end else begin
116        dout[9]   <=#1 1'b0;
117        dout[8]   <=#1 q_m_reg[8];
118        dout[7:0] <=#1 q_m_reg[7:0];
119
120        cnt <=#1 cnt - {~q_m_reg[8], 1'b0} + (n1q_m - n0q_m);
121        end
122      end
123      end else begin
124      case ({c1_reg, c0_reg})
125        2'b00:   dout <=#1 CTRLTOKEN0;
126        2'b01:   dout <=#1 CTRLTOKEN1;
127        2'b10:   dout <=#1 CTRLTOKEN2;
128        default: dout <=#1 CTRLTOKEN3;
129      endcase
130
131      cnt <=#1 5'h0;
132      end
133    end
134    end
135    
136  endmodule

编码完成后,对数据我们需要进行并串转换,此操作我们可以使用原语OSERDES2实现10-to-1的过程。最后用OBUFDS将串行数据转换为差分信号输出即可。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1625

    文章

    21665

    浏览量

    601756
  • RGB
    RGB
    +关注

    关注

    4

    文章

    798

    浏览量

    58382
  • HDMI接口
    +关注

    关注

    1

    文章

    124

    浏览量

    34002
  • TMDS
    +关注

    关注

    1

    文章

    21

    浏览量

    15496
  • 信号编码
    +关注

    关注

    0

    文章

    3

    浏览量

    6257

原文标题:基于FPGA的TMDS编码

文章出处:【微信号:HXSLH1010101010,微信公众号:FPGA技术江湖】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    新能源电池产业链及投资机会-磷酸亚铁锂

    新能源电池产业链及投资机会-磷酸亚铁锂  一、前言
    发表于 12-25 09:34 976次阅读

    基于FPGATMDS编码

    音频或视频信号,接下来就着重了解一下TMDS编码TMDS(最小化传输差分信号)中,有四个通道,其中包含了三个数据通道和一个时钟通道。其中数据通道用来传输颜色、音频、控制等信号。HDMI默认
    发表于 04-09 15:45

    【至设计案例系列】基于FPGA的曼彻斯特编码解码设计

    案例系列基于FPGA的曼彻斯特编码解码设计实验简述将输入的数据流经过曼彻斯特编码编码后经过解码器恢复为原来的输入序列。1.1 曼彻斯特
    发表于 04-24 14:22

    基于ATM理念的UTRAN传输架构

    基于ATM理念的UTRAN传输架构:UTRAN(UMTS无线接入网)系统传输网承载其内部业务传送及至CN(核心网)侧的业务汇聚功能,考虑3G网络内,话音、媒体流及Internet等数据业务的多样
    发表于 10-22 10:49 15次下载

    电动汽车用锂离子电池技术的国内外进展

    电动汽车用锂离子电池技术的国内外进展
    发表于 11-10 13:53 781次阅读

    PCB线路板电镀铜工艺

    PCB线路板电镀铜工艺   一.电镀工艺的分类:   酸性光亮铜电镀电镀镍/金电镀锡   二.工艺流程:
    发表于 11-17 14:01 4000次阅读

    EPON技术

    EPON技术 EPON是一个新技术,用于保证提供一个高品质与高带宽利用率的应用。   EPON在日本、韩国、中国大陆、中国台湾及其它以以太网络为基础的地区都
    发表于 01-22 10:43 855次阅读

    笔记本屏幕亮度与反应速度

    笔记本屏幕亮度与反应速度 屏幕亮度   笔记本TFT-LCD的亮度值一般都在150~200 cd/m2(极少数可以
    发表于 01-23 09:34 767次阅读

    BGA封装技术与质量控制

    BGA封装技术与质量控制   SMT(Surface Mount Technology)表面安装技术顺应了电子产品小型化、轻型化的潮流趋势,为实现电子
    发表于 03-30 16:49 1473次阅读

    FPGA运行模式

    FPGA 有两种运行模式,即下载模式和烧写模式。下载模式是在上电的情况下通过 JTAG 接口直接把程序( Altera 平台下是.sof文件,SRAM Object File)下载到FPGA中。因为FPGA是基于SRAM结构的,
    发表于 05-12 13:17 2603次阅读

    鼠标HID例程(中)

    鼠标 HID 例程 紧接《鼠标 HID 例程(上)》一文,继续向大家介绍鼠 标 HID 例程的未完的内容。
    发表于 07-26 15:18 0次下载

    笼型三相异步电动机噪声故障

    笼型三相异步电动机噪声故障_陈金刚
    发表于 01-01 15:44 1次下载

    比较器的原理及应用资料下载

    电子发烧友网为你提供比较器的原理及应用资料下载的电子资料下载,更有其他相关的电路图、源代码、课件教程、中文资料、英文资料、参考设计、用户指南、解决方案等资料,希望可以帮助到广大的电子工程师们。
    发表于 04-14 08:40 27次下载
    <b class='flag-5'>简</b><b class='flag-5'>析</b>比较器的原理及应用资料下载

    5G AAU 功放控制和监测模块

    5G AAU 功放控制和监测模块
    发表于 10-28 12:00 2次下载
    5G AAU 功放控制和监测模块<b class='flag-5'>简</b><b class='flag-5'>析</b>

    AFE8092帧同步特性

    AFE8092帧同步特性
    的头像 发表于 08-24 13:37 627次阅读
    AFE8092帧同步特性<b class='flag-5'>简</b><b class='flag-5'>析</b>