0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

大模型时代,国产GPU面临哪些挑战

Carol Li 来源:电子发烧友 作者:李弯弯 2024-04-03 01:08 次阅读

电子发烧友网报道(文/李弯弯)随着人工智能技术的快速发展,对GPU计算能力的需求也越来越高。国内企业也正在不断提升GPU性能,以满足日益增长的应用需求。然而,相较于国际巨头,国内GPU仍然存在差距,国产GPU在不断成长的过程中也存在诸多挑战。

在大模型训练上存在差距

大语言模型是基于深度学习的技术。这些模型通过在海量文本数据上的训练,学习语言的语法、语境和语义等多层次的信息,用于理解和生成自然语言文本。大语言模型是自然语言处理(NLP)领域中的一个重要分支,应用于文本生成、分类、情感分析等多种任务。

深度学习是现代机器学习领域的一种强大的算法,它可以在图像识别、语音识别、自然语言处理、游戏AI等各种应用领域取得惊人的成果。然而,深度学习对计算几硬件的要求非常高,通常需要使用GPU进行大规模训练。在使用GPU进行深度学习时,一个常见的问题就是选择单精度还是双精度。

浮点数是一种用于表示实数的数值格式,它包括符号位、指数位和尾数位三部分。通过这三部分,浮点数可以表示非常大或非常小的数,同时保持一定的精度。

单精度和双精度是指浮点数在计算机中的存储方式和精度。单精度通常使用32位(4字节)来存储一个浮点数,而双精度则使用64位(8字节)来存储。由于双精度使用了更多的位数,因此它可以表示更大范围的数值,并具有更高的精度。

大模型训练需要处理高颗粒度的信息,因此对于用于大模型训练的GPU芯片处理信息的精细度和算力速度要求更高,现阶段,国产GPU在支持大模型训练的能力方面相对来说还较差。

不同于多媒体和图形处理的单精度浮点计算(FP32)计算需求,双精度浮点计算能力FP64是进行高算力计算的硬性指标。英伟达的A100同时具备上述两类能力,而国内大多GPU只能处理单精度浮点计算。

从目前的信息来看,海光信息的协处理器DCU)能够支持FP64双精度浮点运算,海光DCU属于GPGPU 的一种,采用“类CUDA”通用并行计算架构。据该公司介绍,其DCU产品能够完整支持大模型训练。不过相比于英伟达的A100性能只有其60%。

另外,景嘉微表示面向AI 训练、AI推理、科学计算等应用领域研发成功的景宏系列,支持INT8、FP16、FP32、FP64等混合精度运算,该产品在大模型的训练上或许也可以期待一下。

在软件和生态方面存在差距

除上述情况以外,国产GPU在软件和生态方面与全球领先品牌相比,也存在一定的差距。软件工具链的完善度方面,全球领先的GPU厂商已经构建了完整的软件工具链,包括编译器、调试器、性能分析工具等,可以方便地支持开发人员进行GPU程序的开发、调试和优化。而国产GPU在这方面还需要进一步完善,以满足用户的多样化需求。

生态系统的成熟度方面,全球GPU市场已经形成了较为成熟的生态系统,涵盖了各种应用领域和场景。然而,国产GPU在生态系统建设方面尚处于起步阶段,缺乏足够的应用支持和市场认可。这导致国产GPU在市场上的竞争力相对较弱,难以与全球领先品牌抗衡。

近些年可以明显的看到,国产PGU企业也正在这些方面不断努力。在软件支持方面,国产GPU企业正在积极与主流操作系统、开发环境以及图形处理软件等进行适配,确保用户能够流畅地使用各种应用软件。同时,一些企业还在推动GPU在人工智能、云计算等新兴领域的应用,为国产GPU生态注入新的活力。

在驱动程序优化方面,国产GPU企业也在加大投入力度,不断提升驱动程序的性能和稳定性。通过优化驱动程序,可以充分发挥GPU的性能优势,提升整体计算效率。

此外,国产GPU企业还在积极探索与各种应用场景的深度融合。例如,在游戏、图形设计、视频渲染等领域,国产GPU正在与相关企业合作,共同推动相关应用的发展。这种深度融合不仅有助于提升国产GPU的市场竞争力,也有助于推动整个产业的进步。

写在最后

近些年国产GPU正在蓬勃发展,不过相较于国际巨头,仍然存在较大差距。近年来,大模型快速发展,国产GPU在大模型训练方面的不足也凸显出来。不过也可以看到,目前国产GPU企业都在积极朝大模型方向布局,包括训练和推理。另外软件和生态建设也在加速推进。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4729

    浏览量

    128887
  • 大模型
    +关注

    关注

    2

    文章

    2423

    浏览量

    2637
收藏 人收藏

    评论

    相关推荐

    GPU是如何训练AI大模型

    在AI模型的训练过程中,大量的计算工作集中在矩阵乘法、向量加法和激活函数等运算上。这些运算正是GPU所擅长的。接下来,AI部落小编带您了解GPU是如何训练AI大模型的。
    的头像 发表于 12-19 17:54 71次阅读

    国产模型发展的经验与教训

        本文介绍大模型的计算特征(国产平台介绍、系统挑战、算子实现、容错)、框架的并行性支持、未来算法等。 随着ChatGPT的横空出世,人工智能大模型成为各行各业热议的焦点,国内外各
    的头像 发表于 11-11 11:39 227次阅读
    <b class='flag-5'>国产</b>大<b class='flag-5'>模型</b>发展的经验与教训

    【「大模型时代的基础架构」阅读体验】+ 第一、二章学习感受

    今天阅读了《大模型时代的基础架构》前两章,还是比较轻松舒适的;再就是本书知识和我的工作领域没有任何关联,一切都是新鲜的,似乎每读一页都会有所收获,这种快乐的学习过程感觉也挺不错的。 第一章开始介绍了
    发表于 10-10 10:36

    【「大模型时代的基础架构」阅读体验】+ 未知领域的感受

    国庆前就收到《大模型时代的基础架构》一书,感谢电子发烧友论坛。欢度国庆之余,今天才静下心来体验此书,书不厚,200余页,彩色图例,印刷精美! 当初申请此书,主要是看到副标题“大模型算力中心建设指南
    发表于 10-08 10:40

    模型时代的算力需求

    现在AI已进入大模型时代,各企业都争相部署大模型,但如何保证大模型的算力,以及相关的稳定性和性能,是一个极为重要的问题,带着这个极为重要的问题,我需要在此书中找到答案。
    发表于 08-20 09:04

    名单公布!【书籍评测活动NO.41】大模型时代的基础架构:大模型算力中心建设指南

    基于TOGAF方法论,剖析业界知名案例的设计方案。 全书总计13章。第1章讲解AI与大模型时代对基础架构的需求;第2章讲解软件程序与专用硬件的结合,涉及GPU并行运算库、机器学习程序的开发框架和分布式AI训练
    发表于 08-16 18:33

    国产FPGA的发展前景是什么?

    ,扩大市场份额。 国际化布局:加强与国际巨头的合作与竞争,了解国际市场需求和趋势,推动国产FPGA走向全球。 六、面临挑战尽管国产FPGA的发展前景广阔,但仍
    发表于 07-29 17:04

    模型发展下,国产GPU的机会和挑战

    电子发烧友网站提供《大模型发展下,国产GPU的机会和挑战.pdf》资料免费下载
    发表于 07-18 15:44 10次下载
    大<b class='flag-5'>模型</b>发展下,<b class='flag-5'>国产</b><b class='flag-5'>GPU</b>的机会和<b class='flag-5'>挑战</b>

    模型发展下,国产GPU的机会和挑战(下)

    洞见分析经验分享模型
    电子发烧友网官方
    发布于 :2024年06月11日 17:15:23

    模型发展下,国产GPU的机会和挑战(上)

    洞见分析经验分享模型
    电子发烧友网官方
    发布于 :2024年06月11日 16:51:11

    摩尔线程与无问芯穹在国产GPU上首次实现大模型实训

    近日,摩尔线程与无问芯穹共同宣布,双方已正式完成基于国产全功能GPU千卡集群的3B规模大模型实训。这款名为“MT-infini-3B”的模型,在摩尔线程夸娥(KUAE)千卡智算集群与无
    的头像 发表于 05-27 10:59 656次阅读

    2024年国产数字隔离器:挑战与机遇探析

    国产数字隔离器作为一种重要的电子元器件,在工业控制、通信、医疗等领域发挥着重要作用。然而,面对不断变化的市场环境和技术挑战国产数字隔离器在2024年面临着诸多
    的头像 发表于 05-24 17:15 749次阅读
    2024年<b class='flag-5'>国产</b>数字隔离器:<b class='flag-5'>挑战</b>与机遇探析

    国产GPU在AI大模型领域的应用案例一览

    电子发烧友网报道(文/李弯弯)近一年多时间,随着大模型的发展,GPU在AI领域的重要性再次凸显。虽然相比英伟达等国际大厂,国产GPU起步较晚、声势较小。不过近几年,国内不少
    的头像 发表于 04-01 09:28 3781次阅读
    <b class='flag-5'>国产</b><b class='flag-5'>GPU</b>在AI大<b class='flag-5'>模型</b>领域的应用案例一览

    盘点国产GPU在支持大模型应用方面的进展

    电子发烧友网报道(文/李弯弯)目前谈到GPU,大家首先想到的应该就是英伟达了。近一年多时间来,随着大模型的发展,英伟达GPU的强大实力可谓无人不知。而相比之下,国产
    的头像 发表于 03-29 00:27 6676次阅读
    盘点<b class='flag-5'>国产</b><b class='flag-5'>GPU</b>在支持大<b class='flag-5'>模型</b>应用方面的进展

    FPGA在深度学习应用中或将取代GPU

    现场可编程门阵列 (FPGA) 解决了 GPU 在运行深度学习模型面临的许多问题 在过去的十年里,人工智能的再一次兴起使显卡行业受益匪浅。英伟达 (Nvidia) 和 AMD 等公司的股价也大幅
    发表于 03-21 15:19