0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何实现1万亿晶体管GPU - 半导体的进步推动人工智能蓬勃发展

半导体芯科技SiSC 来源:半导体芯科技SiSC 作者:半导体芯科技SiS 2024-04-03 17:02 次阅读

来源:半导体芯科技编译

Mark Liu 是台湾积体电路制造股份有限公司董事长。

Philip Wong 是斯坦福大学工程学院教授兼台积电首席科学家。

TSMC

1997 年,IBM "深蓝 "超级计算机击败了国际象棋世界冠军加里·卡斯帕罗夫。这是超级计算机技术的一次开创性展示,也是高性能计算有朝一日可能超越人类智能的初露端倪。在随后的 10 年中,我们开始将人工智能用于许多实际任务,如面部识别、语言翻译、推荐电影和商品等。

又过了十五年,人工智能已经发展到可以 "合成知识 "的地步。生成式人工智能,如 ChatGPT 和 Stable Diffusion,可以作诗、创作艺术品、诊断疾病、撰写总结报告和计算机代码,甚至可以设计与人类制造的集成电路相媲美的集成电路。

人工智能将面临巨大的机遇,成为人类所有工作的数字化助手。ChatGPT 就是一个很好的例子,它说明了人工智能如何使高性能计算的使用平民化,为社会中的每一个人带来益处。

所有这些令人惊叹的人工智能应用都归功于三个因素:高效机器学习算法的创新、可用于训练神经网络的海量数据的可用性,以及通过半导体技术的进步在高能效计算方面取得的进展。尽管生成式人工智能革命的贡献无处不在,但却没有得到应有的赞誉。

在过去的三十年里,人工智能领域的重大里程碑都得益于当时领先的半导体技术,没有这些技术是不可能实现的。“深蓝”采用 0.6 微米和 0.35 微米节点的混合芯片制造技术实现的。在 ImageNet 比赛中获胜、开启了当前机器学习时代的深度神经网络,是采用 40 纳米技术实现的。AlphaGo 采用 28 纳米技术征服了围棋比赛,而 ChatGPT 的最初版本是在采用 5 纳米技术制造的计算机上进行训练的。最新版本的 ChatGPT 由采用更先进的 4 纳米技术的服务器驱动。相关计算机系统的每一层,从软件和算法到架构、电路设计和设备技术,都是人工智能性能的倍增器。但公平地说,基础晶体管-器件技术是上述各层技术进步的基础。

如果AI革命要以目前的速度继续下去,那么半导体行业将需要更多的努力。在十年内,它将需要一个 1 万亿晶体管 GPU,也就是说,GPU 的设备数量是当今典型设备的 10 倍。

wKgZomYNGyyAfQQ2AAGqScIz9ks991.jpg

AI模型规模持续增长

在过去五年中,人工智能训练所需的计算量和内存访问量呈数量级增长。例如,训练 GPT-3 需要相当于每秒 50 亿亿次以上的运算量(即每天 5,000 petaflops )和 3 万亿字节(3 TB)的内存容量。

新的生成式人工智能应用所需的计算能力和内存访问能力都在持续快速增长。我们现在需要回答一个紧迫的问题: 半导体技术如何才能跟上步伐?

从集成器件到集成芯片

自集成电路发明以来,半导体技术一直在缩小特征尺寸,以便在拇指指甲大小的芯片中塞进更多的晶体管。如今,集成度更上一层楼;我们正在超越二维扩展,进入三维系统集成。现在,我们正在把许多芯片组装成一个紧密集成、大规模互连的系统。这是半导体技术集成的范式转变。

在AI时代,系统的能力与集成到系统中的晶体管数量成正比。其中一个主要限制因素是,光刻芯片制造工具的设计是为了制造不超过 800 平方毫米的集成电路,这就是所谓的 “光罩极限”(reticle limit)。但是,我们现在可以将集成系统的尺寸扩展到光刻的光罩极限之外。通过将多个芯片连接到更大的中介层(一块内置互连的硅片)上,我们可以集成一个包含比单个芯片上更多器件的系统。例如,台积电CoWoS技术(
chip-on-wafer-on-substrate )可容纳多达六个光罩场的计算芯片,以及十几个高带宽内存(HBM)芯片。

Nvidia 如何使用 CoWoS 先进封装技术

CoWoS是台积电的硅上芯片先进封装技术,目前已应用于产品中。。示例包括 Nvidia Ampere 和 Hopper GPU。每个都由一个 GPU 芯片和六个高带宽内存立方体组成,全部位于硅中介层上。计算GPU芯片的大小与芯片制造工具目前允许的大小差不多。Ampere 有 540 亿个晶体管,Hopper 有 800 亿个。从 7 纳米技术到更密集的 4 纳米技术的转变使得在基本相同的面积上封装 50% 以上的晶体管成为可能。Ampere 和 Hopper 是当今大型语言模型 (LLM) 训练的主力军。训练 ChatGPT 需要数以万计的此类处理器

HBM 是另一个对 AI 日益重要的关键半导体技术的实例:通过将芯片堆叠在一起来集成系统的能力,我们台积电称之为系统级集成芯片 (SoIC
system-on-integrated-chips )。HBM 由控制逻辑 IC 顶部的一组垂直互连的 DRAM 芯片组成。它使用称为硅通孔 (TSV) 的垂直互连来获取信号,并通过每个芯片和焊料凸点来形成存储芯片之间的连接。如今,高性能 GPU 广泛使用 HBMm。

展望未来,3D SoIC 技术可以为当今的传统 HBM 技术提供“无凸通替代方案”(bumpless alternative),在堆叠芯片之间提供更密集的垂直互连。最近的进展表明,HBM 测试结构具有 12 层芯片堆叠,使用混合键合,这种铜对铜的连接密度比焊接凸点更高。该存储器系统在较大的基础逻辑芯片上低温键合,总厚度仅为 600 μm。

高性能计算系统由大量运行大型人工智能模型的芯片组成,高速有线通信可能会迅速限制计算速度。如今,光互连已被用于连接数据中心的服务器机架。不久的将来,我们将需要基于硅光子技术的光接口,与 GPU 和 CPU 封装在一起。这样就能为 GPU 与 GPU 之间的直接光通信提供更高的能效和面积效率带宽,从而使数百台服务器能够像拥有统一内存的单个巨型 GPU 一样运行。由于人工智能应用的需求,硅光子技术将成为半导体行业最重要的使能技术之一。

迈向万亿晶体管 GPU

AMD 如何使用 3D 技术

AMD MI300A 加速处理器单元不仅利用了 CoWoS,还利用了台积电的 3D 技术——SoIC。MI300A 结合了 GPU 和 CPU 内核,旨在处理最大的AI工作负载。GPU 执行AI的密集矩阵乘法运算,而 CPU 则控制整个系统的运行,高带宽内存 (HBM) 则统一为两者服务。9 个采用 5 纳米技术制造的计算芯片堆叠在 4 个采用 6 纳米技术制造的基础芯片之上,这些芯片专门用于缓存和 I/O 流量。基础芯片和 HBM 再硅中介层之上。处理器的计算部分由 1500 亿个晶体管组成。

如前所述,用于人工智能训练的典型 GPU 芯片已经达到了光罩极限 (reticle field limit)。它们的晶体管数量约为 1000 亿个。晶体管数量继续增加的趋势将需要多个芯片,通过 2.5D 或 3D 集成相互连接来执行计算。通过 CoWoS 或 SoIC 以及相关的先进封装技术将多个芯片集成在一起,可使每个系统的晶体管总数大大超过单个芯片的晶体管总数。我们预测,十年内多芯片 GPU 的晶体管数量将超过 1 万亿个。

我们需要在3D堆栈中将所有这些芯片连接在一起,但幸运的是,业界已经能够迅速缩小垂直互连的间距,提高连接密度。而且还有足够的空间容纳更多。我们认为互连密度没有理由不能增长一个数量级,甚至更高。

wKgaomYNGy2AeVWeAAGoWTgCtqk996.jpg

GPU 的高能效性能趋势

那么,所有这些创新硬件技术是如何提升系统性能的呢?

如果我们看看能效性能指标(EEP:energy-efficient performance)的稳步提升,就能发现服务器 GPU 的发展趋势。EEP是对系统能效和速度的综合衡量。在过去的 15 年中,半导体行业每两年就能将能效性能提高约三倍。我们相信,这一趋势将以历史性的速度持续下去。推动这一趋势的将是多方面的创新,包括新材料、器件和集成技术、极紫外线(EUV)光刻技术、电路设计、系统架构设计以及所有这些技术要素的共同优化等等。

wKgZomYNGy2ACrhUAAIqxSU01CU775.jpg

特别是,我们在此讨论的先进封装技术将有助于提高 EEP。此外,系统技术协同优化(STCO: system-technology co-optimization)等概念也将变得越来越重要,在STCO 中,GPU 的不同功能部分被分离到各自的芯片上,并使用性能最好、最经济的技术来构建每个部分。

3D集成电路的Mead-Conway时刻

1978 年,加州理工学院教授 Carver Mead 和施乐 PARC的 Lynn Conway 发明了一种集成电路计算机辅助设计方法。他们使用一套设计规则来描述芯片的缩放比例,这样工程师们就可以轻松地设计超大规模集成电路(VLSI),而无需太多的工艺技术知识。

3D芯片设计也需要这种能力。如今,设计人员需要了解芯片设计、系统架构设计以及硬件和软件优化。制造商需要了解芯片技术、3D IC技术和先进的封装技术。正如我们在 1978 年所做的那样,我们再次需要一种通用语言,以电子设计工具能够理解的方式来描述这些技术。这种硬件描述语言可以让设计人员自由地进行 3D 集成电路系统设计,而无需考虑底层技术。它即将问世: 一种名为 3Dblox 的开源标准已被当今大多数技术公司和电子设计自动化 (EDA) 公司所采用。

隧道之外的未来

在人工智能时代,半导体技术是实现新的人工智能能力和应用的关键因素。新型 GPU 不再受限于过去的标准尺寸和外形尺寸。新的半导体技术也不再局限于在二维平面上缩小下一代晶体管的尺寸。一个集成的人工智能系统可以由尽可能多的高能效晶体管、适用于专业计算工作负载的高效系统架构以及优化的软硬件关系组成。

在过去的 50 年里,半导体技术的发展就像在隧道里行走。前方的道路是清晰的,因为有一条明确的道路。每个人都知道需要做什么:缩小晶体管。

现在,我们已经走到了隧道的尽头。从这里开始,半导体技术将越来越难发展。然而,在隧道之外,还有更多的可能性。我们不再受过去的束缚。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    334

    文章

    27305

    浏览量

    218199
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4729

    浏览量

    128903
  • 晶体管
    +关注

    关注

    77

    文章

    9684

    浏览量

    138106
  • AI
    AI
    +关注

    关注

    87

    文章

    30763

    浏览量

    268917
  • 人工智能
    +关注

    关注

    1791

    文章

    47208

    浏览量

    238304
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    人工智能的结合,无疑是科技发展中的一场革命。在人工智能硬件加速中,嵌入式系统以其独特的优势和重要性,发挥着不可或缺的作用。通过深度学习和神经网络等算法,嵌入式系统能够高效地处理大量数据,从而
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这一章后,我深感人工智能与生命科学的结合正引领着一场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这一章详细阐述了人工智能如何通过其强大的数据处理和分析
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得:
    发表于 10-14 09:12

    NMOS晶体管和PMOS晶体管的区别

    NMOS晶体管和PMOS晶体管是两种常见的金属氧化物半导体场效应晶体管(MOSFET)类型,它们在多个方面存在显著的差异。以下将从结构、工作原理、性能特点、应用场景等方面详细阐述NMO
    的头像 发表于 09-13 14:10 3157次阅读

    商汤科技加入中国移动人工智能大模型评测联盟

    我国人工智能大模型评测的合作与促进平台,推动人工智能技术的发展和应用,提高国产人工智能产品的质量和竞争力。
    的头像 发表于 07-12 14:20 655次阅读

    多样性算力产业峰会2024成功举办,得瑞领新助力推动产业生态蓬勃发展

    6月18日,“共筑新算力,智启新未来”多样性算力产业峰会2024在北京成功举办。得瑞领新受邀参会并在“智算和高速互联”论坛带来主题分享,期待未来与业界同仁一道,共同推动智能计算产业的蓬勃发展
    的头像 发表于 06-20 09:27 388次阅读
    多样性算力产业峰会2024成功举办,得瑞领新助力<b class='flag-5'>推动</b>产业生态<b class='flag-5'>蓬勃发展</b>

    我国动力电池产业蓬勃发展,装车量持续增长

    在新能源汽车市场的持续繁荣和动力电池技术进步的双重推动下,我国动力电池产业正在迎来蓬勃发展的新时代。近日,中国汽车动力电池产业创新联盟发布的最新数据显示,5月份我国动力电池装车量达到了39.9GWh
    的头像 发表于 06-17 16:35 1197次阅读
    我国动力电池产业<b class='flag-5'>蓬勃发展</b>,装车量持续增长

    如何借助AI实现1万亿晶体管GPU

    人工智能成为所有人类事业的数字助手,拥有着巨大的机遇。ChatGPT是人工智能如何使高性能计算的使用民主化、为社会中的每个人带来好处的一个很好的例子。
    发表于 04-02 17:07 180次阅读
    如何借助AI<b class='flag-5'>实现</b><b class='flag-5'>1</b><b class='flag-5'>万亿</b><b class='flag-5'>晶体管</b><b class='flag-5'>GPU</b>

    我国 IPv6 蓬勃发展,网络“高速公路”全面建成

    )支撑了互联网的蓬勃发展,地址长度为32位,可提供大约40亿个地址。随着互联网的普及与广泛应用,特别是移动互联网、云计算、物联网、工业互联网的蓬勃发展,传统的IPv4
    的头像 发表于 03-29 14:08 374次阅读
    我国 IPv6 <b class='flag-5'>蓬勃发展</b>,网络“高速公路”全面建成

    云天励飞推动人工智能产业发展

    企业的技术储备与研发投入、市场竞争,探讨我国人工智能企业实现规模化商业变现、推动产业变革的新机遇与挑战。
    的头像 发表于 01-29 10:54 677次阅读

    单结晶体管的工作原理是什么?

    常用的半导体元件还有利用一个PN结构成的具有负阻特性的器件一单结晶体管,请问这个单结晶体管是什么?能够实现负阻特性?
    发表于 01-21 13:25

    推动人工智能安全发展

    近年来,国家高度重视人工智能安全发展,逐步完善相关政策法规。国务院印发《新一代人工智能发展规划》提出面向2030年我国新一代人工智能
    的头像 发表于 01-04 16:32 1149次阅读

    如何走向万亿晶体管之路?

    台积电预计封装技术(CoWoS、InFO、SoIC 等)将取得进步,使其能够在 2030 年左右构建封装超过一万亿晶体管的大规模多芯片解决方案。
    发表于 12-29 10:35 353次阅读
    如何走向<b class='flag-5'>万亿</b>级<b class='flag-5'>晶体管</b>之路?

    英特尔:2030年前实现单个封装内集成1万亿晶体管

    12月9日,英特尔在IEDM 2023(2023 IEEE 国际电子器件会议)上展示了使用背面电源触点将晶体管缩小到1纳米及以上范围的关键技术。英特尔表示将在2030年前实现在单个封装内集成1
    的头像 发表于 12-28 13:58 716次阅读