0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

颇有前景的半导体替代材料:SiC和GaN适用范围及优缺点介绍

新思科技 来源:新思科技 2024-04-17 16:11 次阅读

自1954年以来,硅一直是先进技术发展的重要基石。人们普遍认为,硅作为电子元件基础结构核心材料的地位不可动摇。但根据摩尔定律,硅也有局限性。因此,自初次使用硅作为半导体原材料以来,业界一直在寻找替代材料。

迄今为止,没有哪种材料能够像硅一样兼具多元化特性,半导体行业大规模投资硅材料也预示着其长期存在的必然性。但事实上,半导体材料非常丰富,并且能够为微电子的不同领域带来宝贵价值。要知道,第一个晶体管使用的不是硅,而是锗。如今,许多替代材料正与硅一起扮演重要角色,在消费技术持续向电气化转变的过程中,这一点尤为突出。半导体材料专家深知,问题不在于用一种材料替代另一种材料,而是为具体应用选择更合适的材料,帮助满足性能、效率、稳健性等要求。

接下来将提到两种颇有前景的半导体替代材料,并将围绕其适用范围以及优缺点展开详细介绍。

适合极端环境的解决方案

与硅相比,宽禁带半导体材料具有一系列优势。这些材料可在更高的电压和温度下工作,能够开启更高的通信信道并在更多样的环境中正常运行,有时甚至适用于极端环境,也因此成为了创新的重要驱动力。宽禁带材料有助于实现更快、更小、更高效且更可靠的器件设计,从而能为功率和射频电子应用带来益处。

氮化镓(GaN)和碳化硅(SiC)是目前比较常用的两种宽禁带半导体材料。这两者在20世纪80年代末因蓝光LED的开发走向商业化,并因其较大的能隙尺寸而成为可能(能隙是指半导体中电子的价带与导带之间的能量区间)。氮化镓在生长工艺上相较于碳化硅取得的突破,使其在光学技术领域得到了广泛应用,例如在蓝光DVD播放器中的使用,并因此在2014年获得了诺贝尔物理学奖的肯定。

宽禁带半导体材料除了具备较大的能隙特性之外,还拥有极高的热导率,这意味着它们能够更有效地散热,进而提升设备的运行效率,因为较低的工作温度有利于设备性能的优化。这些材料能够耐受更高的电场和高温环境,使它们在功率电子领域的应用尤为吸引人,尤其是在设计逆变器电源以及电机驱动系统等方面。在汽车领域,例如电动汽车(EVs)和插电式混合动力汽车等,GaN和SiC为功率器件带来的性能特性极大地提升了它们的应用价值。

除了应用于LED和功率电子元件,GaN还是射频放大器等高频器件的重要材料,推动了无线通信5G网络的发展。

此外,SiC材料非常坚硬,具有出色的机械稳定性,并且材料成本比较低,能够在许多行业中大放异彩,甚至能用于制造磨料和切割工具的领域中。

潜力巨大但非常复杂

在许多方面,GaN和SiC在半导体行业中的应用复杂度都比传统硅材料更高。GaN难以广泛采用的主要问题在于其可靠性和成本。

对比硅的1.12电子伏,氮化镓的能隙高达3.4电子伏,这一特性使其在高功率及高频率设备上有着天然的适用性。然而,在生长过程中,GaN易出现缺陷和位错,这可能会影响器件的可靠性。此外,生产大面积的GaN基晶圆既困难又成本巨大。为解决这些问题,众多研究者致力于研发将GaN集成至硅晶圆的技术,这涉及到将两种不同晶体结构以尽量避免产生位错和缺陷的方式相结合。这一任务极具挑战性,且可能有晶圆裂纹的风险。

碳化硅的硬度及其脆性特点,使其生产过程面临诸多挑战。该材料在生长和加工过程中需在较高温度下长时间耗能。特别是在使用广泛的4H-SiC晶体结构时,由于其高透明度和高折射率的特性,使得在检测过程中发现表面缺陷尤为困难。

半导体仿真的新时代

前景广阔的半导体材料数不胜数,GaN和SiC只是其中的两种。我们预期将不断见证新型材料及其应用的涌现,这些材料将利用诸如自旋电子学、铁电性质或相变材料等新颖物理学原理,在替代性存储器件设计等领域发挥作用。

在探索石墨烯之外的二维材料方面,研究者们已经发现了新的材料种类,比如过渡金属硫属化合物单分子层(TMDs),这一发现为新型器件的研发敞开了大门。同时,神经形态计算的领域正在迅速扩展,这将对器件功能和计算机体系结构产生重大影响。最终,低温应用的研究可能对提升数据中心的能效发挥重要作用,尤其是在人工智能应用迅猛增长、能源消耗问题日益凸显的背景下,这一研究有望引领我们进入全新的材料类别。

在这些讨论中,我们关注的是对硅基材料的补充而非替代。现有技术及不断演进的新技术正重新定义尺寸缩放的原则。随着我们步入系统技术协同优化(STCO)的新时代,设计将逐渐呈分散化,这样不仅可以更经济地构建单个组件,而且还能通过重新组合它们来提升整体性能。为此,我们必须为新时代的芯片设计探索做好准备。



审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12073

    浏览量

    231162
  • 半导体
    +关注

    关注

    334

    文章

    27320

    浏览量

    218267
  • 电机驱动
    +关注

    关注

    60

    文章

    1216

    浏览量

    86734
  • SiC
    SiC
    +关注

    关注

    29

    文章

    2810

    浏览量

    62619
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1935

    浏览量

    73328

原文标题:不止于SiC和GaN,半导体材料黑马还有哪些?

文章出处:【微信号:Synopsys_CN,微信公众号:新思科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    常见熔断器型号及其适用范围

    熔断器是一种电流保护器,当电流超过规定值时,以其自身产生的热量使熔体熔断,从而断开电路。以下是常见熔断器型号及其适用范围: 一、高压熔断器 RN型 适用范围 :用于保护电力线路和设备。 XRNM型
    的头像 发表于 11-24 17:21 1054次阅读

    SiCGaN:新一代半导体能否实现长期可靠性?

    近年来,电力电子应用中硅向碳化硅(SiC)和氮化镓(GaN)的转变越来越明显。在过去的十年中,SiCGaN半导体成为了推动电气化和强大未来
    的头像 发表于 10-09 11:12 351次阅读
    <b class='flag-5'>SiC</b>和<b class='flag-5'>GaN</b>:新一代<b class='flag-5'>半导体</b>能否实现长期可靠性?

    试比较单层绕组和双层绕组的优缺点及它们的应用范围

    单层绕组和双层绕组在电机和变压器中都有应用,它们各自具有独特的优缺点,并适用于不同的场景。 单层绕组的优缺点及应用范围 优点 : 结构简单 :单层绕组只在一个层面上进行绕制,因此其结构
    的头像 发表于 10-08 10:44 1416次阅读

    SiC MOSFET和SiC SBD的区别

    SiC MOSFET(碳化硅金属氧化物半导体场效应晶体管)和SiC SBD(碳化硅肖特基势垒二极管)是两种基于碳化硅(SiC材料的功率
    的头像 发表于 09-10 15:19 1563次阅读

    什么是SiC功率器件?它有哪些应用?

    SiC(碳化硅)功率器件是一种基于碳化硅材料制造的功率半导体器件,它是继硅(Si)和氮化镓(GaN)之后的第三代半导体
    的头像 发表于 09-10 15:15 1681次阅读

    GaN HEMT有哪些优缺点

    GaN HEMT(氮化镓高电子迁移率晶体管)作为一种先进的功率半导体器件,在电力电子、高频通信、汽车电子等多个领域展现出了显著的优势,但同时也存在一些缺点。以下是对GaN HEMT
    的头像 发表于 08-15 11:09 1237次阅读

    功率半导体和宽禁半导体的区别

    半导体则由氮化镓(GaN)、碳化硅(SiC)等材料制成。 禁带宽度:功率半导体的禁带宽度相对较窄,通常在1eV左右,而宽禁
    的头像 发表于 07-31 09:07 487次阅读

    无损检测适用条件及优缺点

    、化工、机械制造、建筑、汽车、电子等众多领域。本文将详细介绍无损检测的适用条件、优缺点以及各种无损检测方法。 一、无损检测的适用条件 材料
    的头像 发表于 05-24 15:02 1610次阅读

    变压器的材质分类及适用范围

    导致输出有较大畸变。 常用的变压器有按照内部材质分类有空芯、铁芯、硅钢片等,有没有其他的材质,不同的材质有什么不同的适用范围,针对输入频率的不同有什么影响? 有没有一些详细资料介绍这些变压器的材质和适用范围
    发表于 03-26 18:12

    为什么GaN被誉为下一个主要半导体材料

    拥有能够在高频下高功率运行的半导体固然很好,但尽管 GaN 提供了所有优势,但有一个主要缺点严重阻碍了其在众多应用中替代硅的能力:缺乏 P -类型。
    发表于 02-29 10:26 359次阅读

    半导体硅片行业报告,国产替代进程加速

    第二代半导体材料以砷化镓(GaAs)、磷化铟(InP)为代表。第三代半导体材料主 要包括碳化硅(SiC)、氮化镓(
    发表于 01-23 10:06 977次阅读
    <b class='flag-5'>半导体</b>硅片行业报告,国产<b class='flag-5'>替代</b>进程加速

    欧姆定律公式的适用范围

    ,其中V表示电压,I表示电流,R表示电阻。这个简单的方程提供了电子学和电路分析的基本框架。然而,欧姆定律并不是应用于所有电路和组件的法则,它有其适用范围和限制。 首先,欧姆定律适用于线性电阻。线性电阻是指其电阻值与通过其的
    的头像 发表于 01-16 15:50 3928次阅读

    三安宣布进军美洲市场,为市场提供SiCGaN功率半导体产品

    1月8日,Luminus Devices宣布,湖南三安半导体与其签署了一项合作协议,Luminus将成为湖南三安SiCGaN产品在美洲的独家销售渠道,面向功率半导体应用市场。
    的头像 发表于 01-13 17:17 1473次阅读

    氮化镓半导体属于金属材料

    氮化镓半导体并不属于金属材料,它属于半导体材料。为了满足你的要求,我将详细介绍氮化镓半导体的性质
    的头像 发表于 01-10 09:27 2159次阅读

    同是功率器件,为什么SiC主要是MOSFET,GaN却是HEMT

    迁移率晶体管)。为什么同是第三代半导体材料SiCGaN在功率器件上走了不同的道路?为什么没有GaN MOSFET产品?下面我们来简单分析
    的头像 发表于 12-27 09:11 3697次阅读