High switching frequencies are among the biggest enablers for small size. To that end, gallium nitride (GaN) switches provide an effective way to achieve these high frequencies given their low parasitic output capacitance (C OSS ) and rapid turn-on and turn-off times. It is possible, however, to amplify the high-power densities enabled by GaN switches through the use of advanced control techniques.
In this article, I will examine an advanced control method used inside a 5-kW power factor corrector (PFC) for a server. The design uses high-performance GaN FETs to operate the power supplies at the highest practical frequency. The power supply also uses a novel control technology that extracts more performance out of the GaN FETs. The end result is a high-efficiency, small-form-factor design with higher power density.
评论