0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

智行者联合清华完成国内首套全栈式端到端自动驾驶系统的开放道路测试

智行者科技 来源:智行者科技 2024-04-22 09:24 次阅读

近日,智行者与清华大学车辆学院李克强院士、李升波教授领导的研究团队,完成了国内首套全栈式端到端自动驾驶系统的开放道路测试。依托车路云一体化智能网联驾驶架构,该团队研发的端到端自动驾驶系统涵盖了“感知-预测-决策-规划-控制”等全链路环节,从今年1月份率先启动了城市工况的开放道路验证,经过近4个月的内部测试,完成了各项性能的综合评估。这一工作为L3级及以上高级别自动驾驶系统的落地应用奠定了坚实的基础。

系统开发中,智行者主要贡献在于感知模型的构建与预训练,并与清华大学等单位共同完成了实车平台的搭建与开放道路测试。

目前,处于L1、L2级智能驾驶系统主要依赖“模块分解”的设计思路,尽管部分模块(如感知、预测等)已经初步神经网络化,但是决策、规划、控制等模块仍然严重依赖人工规则和在线优化,缺乏利用数据进行闭环迭代的能力,这导致行车过程的智能性仍然不足。同时,模块间不可避免地存在较大信息损失,且各模块的优化目标存在一定冲突,不利于自动驾驶过程的综合性能提升。

与之相比,以全模块神经网络化为特征的“端到端”自动驾驶系统,因模块与模块之间的信息传递可依赖高维度特征向量,且神经网络具有充分的训练自由度,最大程度地减少了传感器到执行器之间的信息损失,使得全栈模块具备利用数据闭环进行快速更新的能力,这为高级别自动驾驶的智能性提升提供一条全新的技术路径。

面向这一技术发展趋势,清华大学与智行者团队自2018年开始瞄准端到端自动驾驶领域进行深耕,重点突破决策、规划与控制领域的神经网络设计与训练难题。团队先后提出了面向高级别自动驾驶的集成式决控(IDC)开发框架,研发了综合性能国际领先的数据驱动强化学习算法(DSAC),首创了时空分离的交通参与者行为预测模型(SEPT),设计了具有动作平滑特性的控制型神经网络架构(LipsNet),开发了自主知识产权的最优控制策略近似求解器(GOPS),以蚂蚁搬家的精神逐一解决了端到端自动驾驶面临的一系列核心难题。

以此为基础,今年年初清华大学与智行者团队成功研制了首个从传感器原始数据到执行器控制指令的全栈神经网络化自动驾驶系统,并率先完成了城市工况开放道路的实车测试验证。

f514f176-ffcf-11ee-a297-92fbcf53809c.jpg

从感知到控制的全链路端到端自动驾驶系统原理图

清华大学与智行者在这一研究工作中,形成了校企之间紧密配合、通力协作的联合攻关团队,共同完成了系统功能集成、性能评估迭代等后期任务。本研究获得国家“十四五”重点研发计划、国家自然科学基金以及清华大学自主科研计划支持。


审核编辑:刘清
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2547

    文章

    50525

    浏览量

    751445
  • 自动驾驶
    +关注

    关注

    783

    文章

    13647

    浏览量

    166060
  • 智能网联
    +关注

    关注

    4

    文章

    598

    浏览量

    23217
  • 智行者科技
    +关注

    关注

    0

    文章

    16

    浏览量

    962

原文标题:智行者联合清华大学等单位完成国内首套端到端自动驾驶系统的开放道路测试

文章出处:【微信号:idriverplus,微信公众号:智行者科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    连接视觉语言大模型与自动驾驶

    自动驾驶在大规模驾驶数据上训练,展现出很强的决策规划能力,但是面对复杂罕见的驾驶场景,依然
    的头像 发表于 11-07 15:15 131次阅读
    连接视觉语言大模型与<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自动驾驶</b>

    Waymo利用谷歌Gemini大模型,研发端自动驾驶系统

    迈新步,为其机器人出租车业务引入了一种基于谷歌多模态大语言模型(MLLM)“Gemini”的全新训练模型——“多模态自动驾驶模型”(EMMA)。
    的头像 发表于 10-31 16:55 921次阅读

    智己汽车“”智驾方案推出,老司机真的会被取代吗?

    随着智能驾驶技术的发展,行业已经从早期基于简单规则和模块化逻辑的自动驾驶,逐步迈向依托深度学习的高复杂度智能驾驶解决方案,各车企也紧跟潮流,先后宣布了自己的
    的头像 发表于 10-30 09:47 151次阅读
    智己汽车“<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>”智驾方案推出,老司机真的会被取代吗?

    Mobileye自动驾驶解决方案的深度解析

    强大的技术优势。 Mobileye的解决方案概述 1.1 什么是
    的头像 发表于 10-17 09:35 277次阅读
    Mobileye<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自动驾驶</b>解决方案的深度解析

    测试用例怎么写

    编写测试用例是确保软件系统从头到尾能够正常工作的关键步骤。以下是一个详细的指南,介绍如何编写
    的头像 发表于 09-20 10:29 323次阅读

    实现自动驾驶,唯有

    ,去年行业主流方案还是轻高精地图城区智驾,今年大家的目标都瞄到了(End-to-End, E2E)。
    的头像 发表于 08-12 09:14 563次阅读
    实现<b class='flag-5'>自动驾驶</b>,唯有<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>?

    FPGA在自动驾驶领域有哪些应用?

    是FPGA在自动驾驶领域的主要应用: 一、感知算法加速 图像处理:自动驾驶中需要通过摄像头获取并识别道路信息和行驶环境,这涉及大量的图像处理任务。FPGA在处理图像上的运算速度快,可
    发表于 07-29 17:09

    理想汽车加速自动驾驶布局,成立“”实体组织

    近期,理想汽车在其智能驾驶领域迈出了重要一步,正式成立了专注于“自动驾驶”的实体组织,该组织规模超过200人,标志着理想在
    的头像 发表于 07-17 15:42 1292次阅读

    广汽丰田携手Momenta推出全场景智能驾驶方案

    在近日举行的广汽丰田科技开放日上,一场引领未来的智能驾驶技术盛宴吸引了全球目光。广汽丰田携手国内领先的自动驾驶解决方案提供商Momenta,共同推出了
    的头像 发表于 06-29 17:36 1621次阅读

    佐思汽研发布《2024年自动驾驶研究报告》

    自动驾驶是直接从传感器信息输入(如摄像头图像、LiDAR等)控制命令输出(如转向、加减速等)映射的一
    的头像 发表于 04-20 11:21 2782次阅读
    佐思汽研发布《2024年<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自动驾驶</b>研究报告》

    理想汽车自动驾驶模型实现

    理想汽车在感知、跟踪、预测、决策和规划等方面都进行了模型化,最终实现了的模型。这种模型不仅完全模型化,还能够虚拟化,即在模拟环境中进行训练和测试
    发表于 04-12 12:17 398次阅读
    理想汽车<b class='flag-5'>自动驾驶</b><b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>模型实现

    未来已来,多传感器融合感知是自动驾驶破局的关键

    方面表示,这是L4级自动驾驶公司和车企为了打造Robotaxi量产车,在国内成立的首个合资公司。款车型已完成产品定义,正在进行设计造型的联合
    发表于 04-11 10:26

    浦东新区新增205公里自动驾驶测试道路,总开放里程达200公里

    自2018年以来,上海开始逐步在全市范围内开放不同类型的自动驾驶测试道路,如嘉定、临港、奉贤等地都已有明确规划。浦东新区更是计划在未来构建涵盖自动驾
    的头像 发表于 03-19 13:42 453次阅读

    自动驾驶的基石到底是什么?

    深度学习(DL)与自动驾驶(AD)的融合标志着该领域的重大飞跃,吸引了学术界和工业界的关注。配备了摄像头和激光雷达的AD系统模拟了类似人类的决策过程。
    发表于 02-22 09:50 371次阅读
    <b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自动驾驶</b>的基石到底是什么?

    康谋方案 | 基于场景的硬件在环(HiL)测试智能解决方案

    。同时,针对不同传感器进行协同工作,模拟不同的驾驶环境和交通状况,测试和验证自动驾驶车辆的算法和决策策略,从而确保其安全性和可靠性。 方案特点 针对ADAS/AD系统进行基于场景的
    的头像 发表于 01-31 17:17 697次阅读
    康谋方案 | 基于场景的<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>硬件在环(HiL)<b class='flag-5'>测试</b>智能解决方案