0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

无监督深度学习实现单次非相干全息3D成像

西安中科微星 来源:西安中科微星 作者:西安中科微星 2024-05-13 17:38 次阅读

论文信息

wKgaomZB3wiAJNoBAACtLaxe5kM454.png

背景引入

数字全息术因其能够从单一视点对3D场景进行成像而备受关注。与直接成像相比,数字全息是一种间接的多步骤成像过程,包括光学记录全息图和数值计算重建,为包括深度学习在内的计算成像方法提供了广泛的应用场景。近年来,非相干数字全息术因其成像分辨率高,无散斑噪声和边缘效应,低成本等优点而备受关注。目前,非相干全息术已被应用于孔径成像、超分辨成像、大景深成像和晶格光片显微成像。

近年来,深度学习已被应用于非相干数字全息术。然而,目前所有的报告都是基于数据驱动的监督学习方法,这些方法需要大量的配对标记数据,并且存在泛化不足等问题。为了解决上述挑战,本文提出了一种无训练神经网络先验的单次非相干全息自校准3D重建方法,称为SC-RUN。SC-RUN可以提高点扩散函数(PSF)的保真度和信噪比,只需单个全息图就可以实现3D对象的高保真度和无伪影重建。本文以无干涉编码孔径相关全息术(I-COACH)成像为例,清楚地展示了SC-RUN的效果。

方法原理

wKgaomZB3w-AAlvcAAERVArshiM308.png

图1 非干涉编码孔径关联全息术装置

非相干光源的光被透镜L1聚焦以照射物体。物体位于透镜L2的前焦平面Z3附近,使得物体可以被认为位于CPM的远场中。加载了编码相位的SLM位于透镜L2距离d处,SLM前加偏振片P。由于I-COACH的成像模型在强度上是线性空间不变,因此传感器记录的物体全息图可以被视为无数个物点全息图的非相干强度叠加,因此,可以先对一个物点的光场进行理论分析,然后通过卷积或叠加得到多物点物体的成像模型。

wKgZomZB3yKAE18nAADC_2XpocQ681.png

图2 SC-RUN—校准点扩散函数结构

wKgZomZB3yiAEVZZAADu94blOWs363.png

图3 SC-RUN—基于无训练神经网络先验的单次成像结构

wKgZomZB3zSAL3AcAADpNWSo_CA168.png

图4 SC-RUN—基于无训练神经网络先验的单次3D成像结构

系统光路

多通道I-COACH实验系统如图5所示,其中振幅型空间光调制器的产品参数如下表所示。

wKgZomZB30CAF2_GAAIHBtrSwn0443.png

图5 I-COACH实验装置

本实验所采用的空间光调制器为我司的TSLM07U-A,其参数规格如下:

型号
TSLM07U-A
调制类型
振幅型
液晶类型
透射式 灰度等级 8位,256阶
像素数
1920×1080
像元大小 8.5μm
有效区域
0.74"
16.3mm×9.18mm
对比度 600:1
响应时间 上升7ms,下降20ms 开口率
57%
刷新频率
60Hz 光学利用率 20%@633nm
电源输入
24V 1A&5V 1A 光谱范围
380nm-1200nm
损伤阈值
2W/cm² 数据接口
DVI

系统由不同轴向平面中的两个目标通道组成,其中数字微镜器件(DMD)用作通道1中的目标1,而振幅型空间光调制器用作通道2中的目标2。来自空间非相干发光二极管LED)的光通过聚光器收集以照射物体,然后两个通道内衍射的物体光通过分束棱镜(BS1)组合并通过透镜L进行准直。偏振片P使物光的偏振方向与纯相位SLM的调制轴方向一致。最后,通过CMOS传感器记录由纯相位SLM调制的光波。纯相位SLM加载由GSA算法合成的全息图。

实验结果

wKgZomZB30-AaZZuAAJvW8R_cnQ992.png

图6 SC-RUN对PSF的校准结果。a) 全息图,b) 原始PSF,c) 使用原始PSF进行非线性重建的结果,d) 已知对象,e) 校准后的PSF,f) 使用校准的PSF进行非线性重建的结果。

wKgaomZB31mAHBBOAAQUfZZ6-ZM395.png

图7 SC-RUN和非线性重建的2D实验结果

wKgZomZB32KASv6UAAFpm-TFt1M636.png

图8 SC-RUN和非线性重建的3D实验结果

以上实验结果表明,SC-RUN在I-COACH上表现良好,从而说明预先校准PSF,然后通过神经网络重建对象的这一策略具有很大的潜力。目前,许多光学成像技术都是通过设计专门的PSF来实现的。例如,通过波前编码生成亚衍射极限点PSF,以实现超分辨率成像。类似地,通过使用波前编码使PSF对错误聚焦不敏感,可以扩展成像深度。对于其他信息,如物体的深度、光谱和偏振,可以编码到PSF中来增加成像维度。上述计算成像技术在很大程度上依赖于PSF的先验信息,并且SC-RUN允许获得高保真度、高信噪比的PSF。因此,当已知前向算子时,可以获得极好的重建结果。此外,由于SC-RUN在不需要数据集和标签的情况下强制测量一致性,并且考虑到大多数成像任务涉及具有已知正向算子的一个或多个逆求解模型,SC-RUN可以容易地应用于各种其他成像任务。

论文总结

本文提出了一种通用的无监督的非相干全息3D重建框架SC-RUN,它结合了非线性重建方法的物理知识和前向成像模型,通过具有额外物理约束的神经网络执行重建任务。SC-RUN同时考虑了时间分辨率和保真度,具有良好的鲁棒性,并且不需要太多标记的数据驱动信息。此外,实验结果表明,首次在非相干全息术中实现了具有强度变化的复杂物体的高保真度重建。SC-RUN通常适用于各种光学配置,并易于适应其他成像任务。此外,SC-RUN对超分辨率成像、孔径成像、景深扩展成像和多维信息复用等领域具有广泛潜力,为获得动态光场的多维信息铺平了道路。

文章链接:https://doi.org/10.1002/lpor.202301091

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 3D
    3D
    +关注

    关注

    9

    文章

    2779

    浏览量

    106677
  • 成像
    +关注

    关注

    2

    文章

    217

    浏览量

    30313
  • 3D成像
    +关注

    关注

    0

    文章

    95

    浏览量

    15978
  • 深度学习
    +关注

    关注

    73

    文章

    5264

    浏览量

    120173
收藏 人收藏

    评论

    相关推荐

    ad19中3d模型不显示?

    封装库导入3d模型不显示,但导入3d模型后的封装库生成pcb文件时显示3d模型,这是什么原因导致的。
    发表于 04-24 13:41

    头盔3D扫描逆向工程3d建模抄数测绘服务-CASAIM中科广电

    3D扫描
    中科院广州电子
    发布于 :2024年04月12日 14:03:01

    3D动画原理:电阻

    电阻3D
    深圳崧皓电子
    发布于 :2024年03月19日 06:49:19

    面向3D增强现实(AR)眼镜的波导全息显示

    同时,全息显示技术被认为是终极的3D显示方案,其利用空间光调制器(SLM)来调制光的波前,还提供了其它独特优势,例如无像差、高分辨率图像、每像素深度控制、眼视差深度提示、视力校正功能以
    的头像 发表于 01-14 10:23 563次阅读
    面向<b class='flag-5'>3D</b>增强现实(AR)眼镜的波导<b class='flag-5'>全息</b>显示

    友思特C系列3D相机:实时3D点云图像

    3D相机
    虹科光电
    发布于 :2024年01月10日 17:39:25

    基于深度学习3D点云实例分割方法

    3D实例分割(3DIS)是3D领域深度学习的核心问题。给定由点云表示的 3D 场景,我们寻求为每个点分配语义类和唯一的实例标签。 3DIS
    发表于 11-13 10:34 1000次阅读
    基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的<b class='flag-5'>3D</b>点云实例分割方法

    3D全息投影的制作教程

    电子发烧友网站提供《3D全息投影的制作教程.doc》资料免费下载
    发表于 11-06 17:07 3次下载
    <b class='flag-5'>3D</b><b class='flag-5'>全息</b>投影的制作教程

    湍流环境中的清晰全息成像

    他们探索了空间相干性和湍流对全息成像的影响,并提出了一种创新方法TWC-Swin,可以在存在这些干扰的情况下恢复高质量的全息图像。他们的研究成果以“利用光的魔力:空间
    的头像 发表于 11-01 16:21 241次阅读
    湍流环境中的清晰<b class='flag-5'>全息</b><b class='flag-5'>成像</b>

    一种多平面低相干衍射成像技术

    日前,中科院上海光机所高功率激光物理联合实验室提出了一种多平面低相干衍射成像技术,相关研究成果发表在《Optics and Lasers in Engineering》上(标题
    的头像 发表于 10-17 16:08 320次阅读
    一种多平面低<b class='flag-5'>相干</b>衍射<b class='flag-5'>成像</b>技术

    深度学习的由来 深度学习的经典算法有哪些

    深度学习作为机器学习的一个分支,其学习方法可以分为监督学习和无监督学习。两种方法都具有其独特的
    发表于 10-09 10:23 410次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>的由来 <b class='flag-5'>深度</b><b class='flag-5'>学习</b>的经典算法有哪些

    基于激光的3D全息技术原理解析

    摘要 :自从激光技术问世以来,全息技术在基于激光良好的相干性的基础上得到了蓬勃的发展。全息技术的日渐成熟,使得投影技术逐渐走向真正的3D世界。
    的头像 发表于 09-19 15:34 1828次阅读
    基于激光的<b class='flag-5'>3D</b><b class='flag-5'>全息</b>技术原理解析

    光学3D表面轮廓仪可以测金属吗?

    并自动聚焦测量工件获取2D3D表面粗糙度、轮廓等一百余项参数,广泛应用于光学,半导体,材料,精密机械等等领域。 总之,光学3D表面轮廓仪在金属测量方面应用广泛,可以实现
    发表于 08-21 13:41

    深度学习框架和深度学习算法教程

    了基于神经网络的机器学习方法。 深度学习算法可以分为两大类:监督学习和无监督学习监督学习的基本
    的头像 发表于 08-17 16:11 844次阅读

    实时3D艺术最佳实践-纹理技术解读

    、mipmapping和法线贴图。 本指南也以Unity学习课程的形式提供-Arm&Unity Presents:移动应用程序的3D艺术优化
    发表于 08-02 06:12

    低成本3D扫描仪机械部分设计中。#3d打印 #3d扫描 #3d建模 #3d #fusion

    3D扫描仪
    学习电子知识
    发布于 :2023年07月03日 20:13:56