0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于 GaN 的 MOSFET 如何实现高性能电机逆变器

深圳市浮思特科技有限公司 2024-05-23 10:56 次阅读

推动更高效的能源利用、更严格的监管要求以及研发了冷却操作的技术都能够实现减少电动机的功耗,虽然硅 MOSFET 等开关技术已得到广泛应用,但它们通常无法满足关键逆变器应用更苛刻的性能和效率目标。

相反,设计人员可以使用氮化镓 (GaN) 来实现这些目标,氮化镓是一种宽带隙 (WBG) FET 器件技术,在成本、性能、可靠性和易用性方面都得到了改进和进步。GaN器件是主流,已成为中档功率逆变器的首选。

wKgaomZOr_mAUJw0AADbBlXSY_A195.png图1:GaN FET 是一款带有集成焊条的钝化芯片器件。来源:Bodo

什么是逆变器?

逆变器产生并调节驱动电机的电压波形,通常是无刷直流(BLDC) 类型。它控制电机速度和扭矩,以实现平稳启动和停止、反向和加速率等要求。尽管负载发生变化,逆变器必须确保实现并维持所需的电机性能。

具有变频输出的电机逆变器不应与交流线路逆变器混淆。后者从汽车电池等电源获取直流电,以提供固定频率的 120/240 V 交流波形,该波形近似于正弦波,可以为线路操作设备供电

GaN 器件相对于硅具有吸引人的特性,包括更高的开关速度、更低的漏源导通电阻 (RDS(ON)) 和更好的热性能。较低的 RDS(ON) 使它们能够用于更小更轻的电机驱动器,并减少功率损耗,从而节省电动自行车和无人机等应用的能源和成本。

较低的开关损耗可实现更高效的电机驱动器,延长轻型电动汽车的续航里程。更快的开关速度可实现低延迟电机响应,这对于需要精确电机控制的应用(例如机器人)至关重要。GaN FET 还可用于开发更强大、更高效的叉车电机驱动器。GaN FET 的更高电流处理能力使它们能够用于更大、更强大的电机。

最终应用的底线优势是减小尺寸和重量、提高功率密度和效率以及更好的热性能。

GaN入门讲解

任何电源开关器件的设计,尤其是中档电流和电压的器件,都需要关注器件的最小细节和独特特性。GaN 器件有两种内部结构选择:耗尽型 (d-GaN) 和增强型 (e-GaN)。d-GaN 开关通常处于“开启”状态,需要负电源;设计成电路更加复杂。相比之下,e-GaN 开关通常是“关闭”晶体管,这导致电路架构更简单。

GaN 器件本质上是双向的,一旦其两端的反向电压超过栅极阈值电压,就会开始导电。此外,由于它们在设计上无法以雪崩模式运行,因此具有足够的电压额定值至关重要。对于降压、升压和桥式直流转换拓扑,在总线电压高达 480 V 时,600 V 的额定值通常就足够了。

尽管 GaN 开关的基本开关功率开关功能很简单,但它们是功率器件,因此设计人员必须仔细考虑开通和关断驱动要求、开关时序、布局、寄生效应的影响、电流控制流动,电路板上的电流电阻 (IR) 下降。

对于许多设计人员来说,评估套件是了解 GaN 器件功能以及如何使用它们的最有效方法。这些套件使用不同配置和功率级别的单个和多个 GaN 器件。它们还包括相关的无源元件,包括电容器电感器电阻器二极管温度传感器、保护器件和连接器

EPC2065 是低功耗 GaN FET 的极佳示例。其漏源电压 (VDS) 为 80 V,漏极电流 (ID) 为 60 安培 (A),RDS(ON) 最大值为 3.6 毫欧 (mΩ)。它仅以带焊条的钝化芯片形式供应,尺寸为 3.5 × 1.95 毫米 (mm)。

与其他 GaN 器件一样,EPC2065 的横向器件结构和多数载流子二极管可提供极低的总栅极电荷 (QG) 和零反向恢复电荷 (QRR)。这些属性使其非常适合需要非常高的开关频率(高达数百千赫兹)和低导通时间的情况,以及那些通态损耗占主导地位的情况。

两个类似的评估套件支持该器件:用于 20 A/500 W 运行的 EPC9167KIT 和用于 20 A/1 千瓦 (kW) 运行的更高功率 EPC9167HCKIT(图 2)。两者都是三相BLDC 电机驱动逆变器板。

wKgaomZOsBeAJymIAAEls9wt7QU598.png图2:EPC9167 板的底部(左)和顶部(右)。来源:Bodo电力系统

基本 EPC9167KIT 配置为每个开关位置使用单个 FET,每相可提供高达 15 ARMS(标称值)和 20 ARMS(峰值)的电流。相比之下,电流较高的 EPC9167HC 配置在每个开关位置使用两个并联 FET,可提供高达 20 ARMS/30 ARMS(标称/峰值)输出电流的最大电流,这证明了 GaN FET 的并联配置相对容易更高的输出电流。图 3 显示了基础 EPC9167 板的框图。

wKgaomZOsCSABYX3AAC5_xidC9E077.png图3:BLDC 驱动应用中的基础 EPC9167 板框图;较高功率的 EPC9167HC 每个开关有两个并联的 EPC2065 器件,而较低功率的 EPC9167 每个开关只有一个 FET。来源:Bodo电力系统

EPC9167KIT 包含支持完整电机驱动逆变器的所有关键电路,包括栅极驱动器、用于内务电源的稳压辅助电源轨、电压检测、温度检测、电流检测和保护功能。

EPC9167 可与多种兼容控制器配对,并得到多家制造商的支持。它可以利用现有资源快速配置为电机驱动逆变器,实现快速开发。

获得更高的功率

功率处理范围的另一端是 EPC2302,这是一款 GaN FET,额定值为 100 V/101 A,最大 RDS(ON) 为 1.8 mΩ。它非常适合 40 至 60 V 的高频 DC-DC 应用和 48 V BLDC 电机驱动器。与 EPC2065 使用的带焊条的钝化芯片封装不同,这款 GaN FET 采用 3 × 5 mm 的低电感 QFN 封装,顶部裸露,可实现卓越的热管理。

外壳顶部的热阻很低,仅为每瓦 0.2°C,这可实现出色的热性能并缓解冷却挑战。其裸露的顶部增强了顶部热管理,而侧面可润湿的侧面可确保整个侧焊盘表面在回流焊接过程中被焊料润湿。这可保护铜并允许在此外部侧面区域进行焊接,以便于进行光学检查。

EPC2302 的占位面积不到同类最佳硅 MOSFET 的一半,且 RDS(on) 和额定电压相似,而其 QG 和 QGD 则明显较小,且其 QRR 为零。这可降低开关损耗和栅极驱动器损耗。EPC2302 的死区时间很短,仅为数十纳秒 (ns),可提高效率,而其零值 QRR 可提高可靠性并最大限度地减少电磁干扰 (EMI)。

为了测试 EPC2302,EPC9186KIT 电机控制器/驱动器电源管理评估板支持高达 5 kW 的电机,并可提供高达 150 ARMS 和 212 APEAK 的最大输出电流(图 4)。

wKgaomZOsDqAZi2vAAEgbMeG9AY851.png图4:EPC2302 的 EPC9186KIT 5 kW 评估板的顶部(左)和底部(右)。来源:Bodo电力系统

EPC9186KIT 在每个开关位置使用四个并联 GaN FET 来实现更高的额定电流,这证明了使用这种方法可以轻松达到更高的电流水平。该板在电机驱动应用中支持高达 100 kHz 的 PWM 开关频率。它包含支持完整电机驱动逆变器的所有关键功能,包括栅极驱动器、稳压辅助内务电源、电压和温度感测、精确电流感测以及保护功能。

电机逆变器是基本电源与电机之间的关键连接。设计更小、更高效、更高性能的逆变器是一个越来越重要的目标。虽然设计人员可以选择中档逆变器使用的关键电源开关器件的工艺技术,但 GaN 器件是首选。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOSFET
    +关注

    关注

    143

    文章

    7064

    浏览量

    212537
  • 逆变器
    +关注

    关注

    282

    文章

    4667

    浏览量

    206084
  • 电机
    +关注

    关注

    142

    文章

    8886

    浏览量

    144915
收藏 人收藏

    评论

    相关推荐

    用于电机控制的GaN技术

    基于氮化镓 (GaN) 的高电子迁移率晶体管 (HEMT) 器件具有出色的电气特性,是高压和高开关频率电机控制应用中 MOSFET 和 IGBT 的有效替代品。我们在这里的讨论集中在 GaN
    发表于 07-27 14:03 2046次阅读
    用于<b class='flag-5'>电机</b>控制的<b class='flag-5'>GaN</b>技术

    GaN FET重新定义电源电路设计

    的好处。虽然增强型GaN器件仍然比硅MOSFET更昂贵,但它们更适合于电源设计,并提供了大大提高性能和效率的设计路径。高压设计案例开关电源(SMPS)设计是提高效率和节约能源的答案。大多数新设计都采用
    发表于 05-03 10:41

    GaN晶体管与其驱动器的封装集成实现高性能

    的开关速度比硅MOSFET快很多,从而有可能实现更低的开关损耗。然而,当压摆率很高时,特定的封装类型会限制GaN FET的开关性能。将GaN
    发表于 08-30 15:28

    GaN HEMT在电机设计中有以下优点

    器件的商业可用性,比如电机逆变器GaN HEMT和直流部分的高性能电容器正在不断满足设计人员对于大功率电机驱动的可靠性需求,这些关键部件让
    发表于 07-16 00:27

    栅极驱动器隔离栅的耐受性能怎么样?

    在高度可靠、高性能的应用中,如电动/混合动力汽车,隔离栅级驱动器需要确保隔离栅在所有情况下完好无损。随着Si-MOSFET/IGBT不断改进,以及对GaN和SiC工艺技术的引进,现代功率转换器/
    发表于 08-09 07:03

    如何实现PMSM高性能控制

    前言 永磁同步电机(PMSM)应用范围广泛,经常用于新能源汽车、机床、工业等领域。在实际使用中,我们经常采用矢量控制算法(FOC)完成PMSM的高性能控制。 矢量控制中通常采用双闭环结构,其中外环为
    发表于 08-27 06:45

    GaN 逆变器用于电池供电的电机驱动应用

    下降沿电流检测同相与腿分流器在用于电机驱动的逆变器中使用分立式 eGaN FET 或 GaN ePowerTM 级 IC 时,通常将同相电流分流器与隔离(功能或电流)IC 一起使用,以提取分流电阻器上
    发表于 03-25 11:02

    剖析用于电池驱动电机驱动应用的GaN-ePower-Stage IC逆变器

    通过消除输入滤波器中的电解电容器,GaN 晶体管和 IC 可以提高电机驱动应用中的功率密度。GaN的卓越开关行为有助于消除死区时间并获得无与伦比的正弦电压和电流波形,从而实现更平稳、静
    发表于 03-25 11:05

    GaN和SiC区别

    GaN由于具有更大输出功率与更快作业频率,已被看好可取代硅元件成为下一世代的功率元件。近年来全球对于都市基础建设、新能源、节能环保等方面的政策支持,扩大对于SiC/GaN高性能功率元件的需求,将进一步促进SiC/
    发表于 08-12 09:42

    GaN为硅MOSFET提供的主要优点和优势

    ,几代MOSFET晶体管使电源设计人员实现了双极性早期产品不可能实现性能和密度级别。然而,近年来,这些已取得的进步开始逐渐弱化,为下一个突破性技术创造了空间和需求。这就是氮化镓(
    发表于 11-14 07:01

    如何利用氮化镓实现高性能栅极驱动?

    ,固有的快速开关瞬变,缺乏反向恢复和高温工作能力。这些优异的性能似乎是高性能功率转换器的完美组合。  然而,要实现GaN性能潜力,必须考虑
    发表于 02-24 15:09

    用于电机集成的400W逆变器设计方案

    近十年来,单相电网用igbt无刷直流电机逆变器进展甚微。采用精确栅极驱动的GaN fet(如Navitas GaN功率ic)可以提高性能。系
    发表于 06-16 07:53

    通过硅和GaN实现高性能电源设计

    MasterGaN 将硅与 GaN 相结合,以加速创建下一代紧凑型高效电池充电器和电源适配器,适用于高达 400 W 的消费和工业应用。通过使用 GaN 技术,新设备可以处理更多功率,同时优化其效率。ST 强调了将 GaN 与驱
    发表于 07-27 08:03 463次阅读
    通过硅和<b class='flag-5'>GaN</b><b class='flag-5'>实现</b><b class='flag-5'>高性能</b>电源设计

    什么是编码器,它如何提高逆变器电机驱动系统的性能

    驱动系统提高了电机控制性能,从而可以改善要求严苛应用的质量和同步功能。如图1所示,功率级使用了功率逆变器高性能位置检测以及电流/电压闭环反馈,因此
    的头像 发表于 08-09 08:09 745次阅读
    什么是编码器,它如何提高<b class='flag-5'>逆变器</b>和<b class='flag-5'>电机</b>驱动系统的<b class='flag-5'>性能</b>?

    水下航行器电机的SiC MOSFET逆变器设计

    利用 SiC 功率器件开关频率高、开关损耗低等优点, 将 SiC MOSFET 应用于水下航行器大功率高速电机逆变器模块, 对软硬件进行设计。
    发表于 03-13 14:31 316次阅读
    水下航行器<b class='flag-5'>电机</b>的SiC <b class='flag-5'>MOSFET</b><b class='flag-5'>逆变器</b>设计