0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于超强耦合超构原子的CMOS集成太赫兹近场传感器设计

MEMS 来源:MEMS 2024-05-30 09:19 次阅读

近年来,电磁波谱中的太赫兹(THz)部分已被证明是推动大量新研究方向的有利平台。其中一个例子就是基于超构材料(metamaterial)的等离子体领域。它涉及许多新的现象,例如频谱调制、波前操控、偏振转换和有源超构材料等。太赫兹频率范围内超构材料最有前途的应用领域之一是生物传感。

在太赫兹频率,基于超构材料的方法已占据领先地位,为集成到完整的芯片实验室(lab-on-chip)器件铺平了道路。最近的文献报道表明,用于生物传感、介电光谱和近场成像功能的全集成电子解决方案正逐步扩展到亚太赫兹(sub-THz)和太赫兹频率范围。

使用超构材料进行生物传感的最常见方法仍然是将介电材料覆盖在谐振结构的表面,从而改变谐振器的特性并使其谐振频率发生偏移。随后,通过基于远场传感的传输实验(见图1)来测量频率偏移。在太赫兹频率,人们一直在努力提高基于谐振频移的传感器的灵敏度水平,以满足生化诊断领域既定方法的标准。

a9fdbf28-1dd5-11ef-b74b-92fbcf53809c.jpg

图1 基于谐振频移的生物传感

据麦姆斯咨询报道,近日,波兰科学院高压物理研究所(Institute of High Pressure Physics PAS)和立陶宛维尔纽斯大学(Vilnius University)的研究人员组成的团队提出了一种全电子方法,利用近场耦合电子传感器实现了最先进的灵敏度。所提出的概念能够有效地实现和探测所谓的超强耦合亚波长超构原子(meta-atom)以及单个谐振电路,可使被测材料的体积限制在几皮升的范围内。该传感器已单片集成到具有成本效益的硅基CMOS技术中。本文的研究结果得到了数值和分析模型的支持,并通过实验进行了验证。这些成果为未来的研发奠定了基础,勾勒出了太赫兹微流控芯片实验室介电光谱传感器的前景。上述成果以“A CMOS-integrated terahertz near-field sensor based on an ultra-strongly coupled meta-atom”为题发表于Scientific Reports期刊上。

基于太场效应晶体管(TeraFET)的近场传感器设计

研究人员提出了一种在亚太赫兹频率下工作的近场传感器解决方案(图2)。

aa17e9d4-1dd5-11ef-b74b-92fbcf53809c.jpg

图2 基于近场TeraFET探测器的传感器概念的示意图

研究人员设计了两种不同的狭缝-偶极子(slot-dipole)天线,并采用台积电(TSMC)的180 nm硅基CMOS工艺制造。其中一种被设计为谐振频率为350 GHz,并在更高频率处会出现快速衰减(图2b中的结构A),而另一种的谐振频率为235 GHz,并在较宽的频率范围内具有几乎平坦的响应(图2c中的结构D)。这两种天线的环外径相同,均为452 µm。由于D型天线是为低频设计的,因此与A型天线的狭缝(边长为100 µm、边缘倒角为25 × 25 µm的正方形孔)相比,它的狭缝更大(直径为164 µm的圆形)。此外,两种天线的传输线设计也不同。

得益于多层金属-介电结构,CMOS技术为探索太赫兹应用中基于超构材料的场效应晶体管(FET)解决方案提供了充分的自由度。因此,研究人员设计了一种工作在350 GHz的开口环谐振器(SRR),其面积为70 × 30 um2,间隙为10 µm,金属化宽度为5 µm。该SRR具有与350 GHz天线相同的谐振频率,可与之电磁耦合。

天线位于距离自由空间最近、距离衬底最远的金属层。因此,它对施加到间隙近场的介电负载非常敏感。单独的天线/耦合到SRR的天线的阻抗特性的频谱变化会直接转化为FET整流信号的变化。因此,覆盖介电材料的天线的TeraFET探测器将给出与未覆盖介电材料的探测器不同的信号。因此,可通过从衬底侧施加的远场太赫兹辐射来探测被测试材料的近场介电特性。特别是,在图2中,研究人员展示了通过基于耦合谐振器的TeraFET探测器进行近场检测的概念可视化。图2c和2d显示了两种不同方案中的太赫兹检测机制:一种基于独立天线;另一种基于天线耦合到SRR的耦合谐振器。

近场传感方法的验证

为了对传感器的适用性进行实验验证,研究人员重点研究了基于235 GHz天线的探测器和基于耦合谐振器的探测器(350 GHz谐振天线与SRR耦合)对水和乙醇的响应。

传感器所需的太赫兹源部分可以进一步优化。图3展示了研究人员使用内部设计的基于CMOS的太赫兹发射器进行光谱实验的结果,该发射器可在248-261 GHz频率范围内进行调谐。发射器采用了针对三次谐波发射进行优化的Colpitts振荡器概念,由台积电代工厂提供的65 nm CMOS技术制造。图3a展示了使用全电子CMOS制造的发射器-传感器对的实验设置。

aa336fec-1dd5-11ef-b74b-92fbcf53809c.jpg

图3 传感实验的设置及结果

在相同的自由空间准光学设置中,连续波光混频器源(太赫兹源三号)被用于探测近场介电特性。基于235 GHz天线的探测器和基于耦合谐振器的探测器在255–260.5 GHz频率范围内对乙醇和水的响应分别如图3b和3c所示。

最后,研究人员使用基于235 GHz谐振天线的探测器进行了一组实验,以确定水溶液中材料的最低可分辨摩尔浓度的检测下限(LDL),并与当前最先进技术进行了比较(图4)。

aa5d218e-1dd5-11ef-b74b-92fbcf53809c.jpg

图4 水中含乙醇混合物的实验测量结果以及与最先进技术的比较

综上所述,这项研究报道了基于太赫兹近场谐振器的传感器的设计和表征结果,该传感器采用180 nm CMOS技术制造,并具有集成天线的场效应晶体管。根据谐振器近场内相对介电常数变化引起的谐振曲线偏移原理,提出的传感器提供了一种独特的片上检测机制。此外,该传感器具有当前太赫兹传感技术前沿的更低检测极限值,并且无需通过共轭机制和聚合酶链式反应等放大灵敏度或特异性的方法,就能以无标记的方式对水环境中的有机分析物实现检测。

总之,这项研究成果不仅有助于加深人们当前对太赫兹近场传感的理解,而且还为高频微流控芯片实验室介电光谱传感器的开发奠定了基础。

论文链接:
https://doi.org/10.1038/s41598-024-61971-x

审核编辑:刘清
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2550

    文章

    51046

    浏览量

    753137
  • CMOS
    +关注

    关注

    58

    文章

    5710

    浏览量

    235428
  • 晶体管
    +关注

    关注

    77

    文章

    9684

    浏览量

    138104
  • 电磁波
    +关注

    关注

    21

    文章

    1454

    浏览量

    53821

原文标题:基于超强耦合超构原子的CMOS集成太赫兹近场传感器

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Phasics波前传感器的应用案例(一)SID4在超强激光的前沿应用

    Phasics的波前传感器凭借其卓越的精度和广泛的适用性,已成为全球快、超强激光设施中的关键诊断工具。以下是一些近期应用实例,展示了SID4系列波前传感器在国际前沿科研中的应用场景及
    的头像 发表于 12-06 01:03 274次阅读
    Phasics波前<b class='flag-5'>传感器</b>的应用案例(一)SID4在<b class='flag-5'>超</b>快<b class='flag-5'>超强</b>激光的前沿应用

    CMOS图像传感器的市场前景 CMOS芯片的热管理方案

    CMOS(互补金属氧化物半导体)图像传感器因其低功耗、高集成度和成本效益而在各种应用中越来越受欢迎。随着智能手机、监控摄像头、自动驾驶汽车和医疗成像等领域对图像质量要求的提高,CMOS
    的头像 发表于 11-14 10:07 235次阅读

    CMOS与传统传感器的成本比较

    的图像传感器,它将图像捕捉和信号处理集成在同一芯片上。 优势 :包括低功耗、低成本、集成度高、速度快等。 传统传感器概述 定义与原理 :传统传感器
    的头像 发表于 11-14 10:05 306次阅读

    CMOS图像传感器的优缺点

    元件,如电荷耦合器件(CCD)所需的复杂驱动电路,这也有助于降低成本。 2. 低功耗 CMOS传感器以其低功耗而闻名。由于CMOS传感器在每
    的头像 发表于 11-14 09:57 575次阅读

    罗德与施瓦茨展示创新6G稳定可调赫兹系统

    罗德与施瓦茨(以下简称“R&S”)在巴黎举办的欧洲微波周(EuMW 2024)上展示了基于光子赫兹通信链路的6G无线数据传输系统的概念验证,助力新一代无线技术的前沿探索。 在 6G-ADLANTIK 项目中开发的稳定可调
    的头像 发表于 10-11 10:56 370次阅读

    关于赫兹波的介绍

    在上面的图表中,光波和无线电波是相同的电磁波,被应用于社会的各个领域。 另一方面,赫兹波还没有被应用。然而,赫兹波具有以下有吸引力的特性和各领域的预期是很有用的。
    的头像 发表于 09-29 06:18 223次阅读
    关于<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>波的介绍

    柔性赫兹材料传感器,用于农药浓度检测

    近日,西安交通大学电信学部信通学院徐开达课题组与中物院微系统与赫兹研究中心开展合作研究,利用柔性衬底与石墨烯材料设计了一款应用于农药浓度检测的赫兹
    的头像 发表于 05-28 10:24 1841次阅读
    柔性<b class='flag-5'>太</b><b class='flag-5'>赫兹</b><b class='flag-5'>超</b><b class='flag-5'>构</b>材料<b class='flag-5'>传感器</b>,用于农药浓度检测

    赫兹时域光谱系统

    图1. 赫兹时域光谱测量结构图 赫兹时域光谱通过测量亚太赫兹至几十
    的头像 发表于 05-24 06:33 492次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>时域光谱系统

    思特威发布小尺寸CMOS图像传感器SC020HGS

    在智能穿戴设备领域,微型化、高性能的图像传感器需求日益增加。思特威(SmartSens,股票代码688213),一家技术领先的CMOS图像传感器供应商,近日发布了全新0.16MP小尺
    的头像 发表于 05-11 15:29 1089次阅读

    芯问科技赫兹芯片集成封装技术通过验收

    《半导体芯科技》杂志文章 芯问科技“赫兹芯片集成封装技术”项目近日顺利通过上海市科学技术委员会的验收。 该项目基于赫兹通信、
    的头像 发表于 04-02 15:23 719次阅读

    利用赫兹表面开发一款革命性的生物传感器

    据麦姆斯咨询报道,近期,伦敦玛丽女王大学(Queen Mary University of London)和格拉斯哥大学(University of Glasgow)多学科研究人员展开合作,利用赫兹
    的头像 发表于 02-25 10:23 764次阅读
    利用<b class='flag-5'>太</b><b class='flag-5'>赫兹</b><b class='flag-5'>超</b><b class='flag-5'>构</b>表面开发一款革命性的生物<b class='flag-5'>传感器</b>

    CMOS图像传感器的制造工艺

    根据图像传感器的应用和制造工艺,图像传感器可分为CCD图像传感器CMOS图像传感器。 特别是CMOS
    的头像 发表于 01-24 09:30 2784次阅读
    <b class='flag-5'>CMOS</b>图像<b class='flag-5'>传感器</b>的制造工艺

    极化复用单载波高速率赫兹光电融合通信实验

    相干光模块应用至赫兹波段,实现大带宽的信号处理、解调与实时通信,近日,南京东南大学朱敏教授团队和电子科技大学四川省先进光电集成射频芯片
    的头像 发表于 01-12 10:42 671次阅读
    极化复用单载波高速率<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>光电融合通信实验

    赫兹真空器件的重要组成部件

    赫兹波处于电磁波谱中电子学与光子学之间的空隙区域,具有不同于低频微波和高频光学的独特属性,在无线通信、生物医学、公共安全等军事和民用领域具有广泛的应用前景。赫兹技术重点是对
    的头像 发表于 01-04 10:03 1685次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>真空器件的重要组成部件

    用单像素赫兹传感器检测材料中的隐藏缺陷

    使用单像素光谱探测快速检测隐藏物体或缺陷的衍射赫兹传感器示意图。 在工程和材料科学领域,检测材料中隐藏的结构或缺陷至关重要。传统的
    的头像 发表于 01-03 06:33 470次阅读
    用单像素<b class='flag-5'>太</b><b class='flag-5'>赫兹</b><b class='flag-5'>传感器</b>检测材料中的隐藏缺陷