0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

MIT/三星研究人员利用活体拉曼光谱直接观察葡萄糖指纹图谱

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-06-05 06:35 次阅读

MIT/三星研究人员对葡萄糖拉曼光谱进行活体观测

Direct observation of glucose fingerprint using in vivo Raman spectroscopy

利用体内拉曼光谱直接观察葡萄糖指纹图谱

应用领域

生命科学,生物拉曼光谱,葡萄糖检测

内容小结

通常,糖尿病患者需要每天监测血糖水平,无创、光学检测血糖水平将极大地提升他们的舒适度。

美国麻省理工学院(MIT,Cambridge, MA, USA)和三星(Samsung, Korea)的研究人员最近在《Science Advances》杂志上发表的一篇论文展示了拉曼光谱法用于皮肤葡萄糖测量的潜力。

该论文首次展示了通过活体皮肤样本检测葡萄糖的拉曼特征,并描述了单次注射和拉曼测量差值的葡萄糖浓度预测的数据分析模型。

新的实验装置使用了离轴激励(830nm)和信号收集配置,优化强信号的产生,同时使不需要的背景信号最小化。

拉曼散射光通过一个定制的61纤维束和高通量LS-785光谱仪收集。通过PIXIS-1024BRX 相机接收大量光纤的光。

使用该系统,研究人员可收集基线测量数据,用以开发改进化、微型化的拉曼系统以及更加强大的预测算法,以便可以用于未来的患者。

仪器

LS-785, PIXIS, BLAZE

仪器特征

LS785+PIXIS

LS785是一种基于透镜的光谱仪,它提供了当今市场上所有商用近红外拉曼光谱仪中高的吞吐量。LS-785的性能优势包括:

易于调节波长;

定制设计的抗反射涂层;

独特的f/2镜头(其专有涂层提供了>99%的吞吐量);

与光纤探针和显微镜的简单接口

高达5 cm-1的分辨率。

Blaze相机

与现有的硅器件相比,Blaze相机在近红外区域具有高的量子效率(75% @ 1000 nm),且读出速度极快:

具有双16MHZ读出通道;

1650 spectra/second@full vertical binning

215 kHz 光谱速率@kinetics mode

此外,Blaze相机可以不通过冷却装置或液体辅助装置,仅通过风冷制冷至-95℃,这使具有极低的暗电流

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光谱
    +关注

    关注

    4

    文章

    840

    浏览量

    35295
  • 三星
    +关注

    关注

    1

    文章

    1605

    浏览量

    31450
收藏 人收藏

    评论

    相关推荐

    高压放大器在气体光谱检测技术研究中的应用

    实验名称:气体光谱检测装置的设计与搭建 测试目的:开展气体光谱检测技术的
    的头像 发表于 12-12 10:57 172次阅读
    高压放大器在气体<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>检测技术<b class='flag-5'>研究</b>中的应用

    科学家将光谱的测量速率提高100倍

    专门设计和制造的光谱仪的图像,其性能比任何其他系统高出100倍。 东京大学光子科学与技术研究所的研究人员 Takuma Nakamura
    的头像 发表于 11-15 06:24 94次阅读

    使用光谱检测组织的恶性变化

    介绍 准确、快速、无创地检测和诊断组织中的恶性疾病是生物医学研究的重要目标。漫反射、荧光光谱光谱等光学方法都已被
    的头像 发表于 10-17 06:32 239次阅读
    使用<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>检测组织的恶性变化

    光谱的原理及其应用

    一、光谱的原理 光谱(Raman spectra)是一种散射
    的头像 发表于 08-26 06:22 464次阅读

    从糖尿病管理到环境监测:葡萄糖传感器的多元应用探索

    葡萄糖传感器作为生物传感技术的重要分支,凭借其高灵敏度、高选择性和实时检测能力,在医疗健康、食品生产及环境监测等领域展现出巨大的应用潜力。本文将深入探讨葡萄糖传感器的工作原理、广泛应用以及当前的发展
    的头像 发表于 08-13 17:03 699次阅读

    精准捕捉信号——时间门控光谱系统实验结果深度解析

    在上篇的文章(详见文末目录:闪光科技推出高性能时间门控光谱系统,为科学研究注入新动力!),一文中,我们详细介绍了时间门控
    的头像 发表于 08-13 10:38 425次阅读
    精准捕捉<b class='flag-5'>拉</b><b class='flag-5'>曼</b>信号——时间门控<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>系统实验结果深度解析

    光谱仪原理及应用

    一、光谱仪的原理 光谱仪的原理是基于印度科学家C.V.
    的头像 发表于 07-01 06:28 733次阅读

    微针葡萄糖传感器贴片 可至皮肤深层持续监测

    一种新型的葡萄糖传感器,这种传感器不会深入真皮,真皮是位于皮下组织上方的皮肤中间层。该公司的“intradermal”生物传感器利用浅层皮肤的代谢活动,使用一系列电化学微传感器测量皮肤表面下的葡萄糖和体内其他化学物质。 Biol
    的头像 发表于 06-20 18:54 1973次阅读

    时间门控光谱的创新驱动力——SPAD的突破与应用

    光会以不同波长散射(散射),形成光谱。每个光谱峰对应于特定的分子键振动,形成独特的“化学
    的头像 发表于 06-19 08:16 617次阅读
    时间门控<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>的创新驱动力——SPAD的突破与应用

    探索光谱的奇妙世界:从原理到应用

    光谱是一种非常强大的材料分析工具,可用于探索研究碳质和无机材料的特征,提供其物相、功能和缺陷的有用信息等。此外,表面增强
    的头像 发表于 06-12 17:08 613次阅读
    探索<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>的奇妙世界:从原理到应用

    可实现较高效率的单分子检测的数字胶体增强光谱

    研究针对表面增强光谱领域内定量的挑战,系统阐述了基于数字胶体增强
    的头像 发表于 04-23 09:07 637次阅读
    可实现较高效率的单分子检测的数字胶体增强<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>

    用于单分子无标记定量检测的数字胶体增强光谱技术

    光谱是一种指纹式的、具有分子结构特异性的非弹性散射光谱。通过表面增强
    的头像 发表于 04-22 14:25 613次阅读
    用于单分子无标记定量检测的数字胶体增强<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>技术

    光谱仪的光学微型化方案研究

    光谱学(Raman spectroscopy)提供了一种微尺度下对化学成分的无损、无标记定量研究手段。
    的头像 发表于 04-20 09:06 874次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>仪的光学微型化方案<b class='flag-5'>研究</b>

    一种用于化学和生物材料识别的便携式光谱解决方案

    基于扫频光源的紧凑型光谱系统:美国麻省理工学院(MIT)和韩国科学技术院(KAIST)的研究人员开发了一种用于化学和生物材料识别的便携式
    的头像 发表于 04-16 10:35 572次阅读
    一种用于化学和生物材料识别的便携式<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>解决方案

    一文解析散射和光谱

    光谱是一种功能强大且用途广泛的分析技术,用于研究分子和材料样品。该技术基于光的非弹性散射,也称为
    的头像 发表于 03-29 11:36 1228次阅读
    一文解析<b class='flag-5'>拉</b><b class='flag-5'>曼</b>散射和<b class='flag-5'>光谱</b>学