0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

给大数据降降温:关于大数据的九个问题

454398 来源:互联网 作者:秩名 2014-05-26 09:37 次阅读

大数据”突然间变得无处不在,似乎每个人都想收集、分析大数据、并从中获利,同时也有人在夸耀或者害怕它的巨大影响。不论我们是在讨论利用谷歌庞大的搜索数据来预测流感的爆发还是利用通话记录来预测恐怖活动,又或者是利用航空公司的数据找到买机票的最佳时机,大数据都可以帮上忙。将现代计算技术和数字时代众多的数据结合起来,似乎可以解决任何问题——犯罪,公共卫生,用语的变化,约会的危险,只要我们把这些数据利用起来。

似乎它的拥护者这样宣称。“在接下来的二十年,”记者帕特里克·塔克在他最近的大数据声明中这样写道,“是透明的未来,”“我们可以以一种前所未有的准确度预测未来的诸多领域,甚至包括一些长久以来被认为人类无法干预的领域。”但大数据其实从来没有听上去那么好。

大数据真的像说的那么好?毫无疑问大数据确实是一个有价值的工具,并在某些领域产生了至关重要的影响。比如,几乎近二十年人工智能计算机程序的成功,从谷歌的搜索引擎到IBM的沃森电脑问答系统,都包括了大量数据的处理。但是正是因为它最近如此受欢迎并得到广泛应用,我们需要清晰的看待大数据究竟能做什么和不能做什么。

大数据能告诉我们是什么,但不能告诉我们为什么

首先,尽管大数据能够非常好地检测相关性,特别是那些用小数据集可能无法测出的微妙相关性,但是它并不会告诉我们哪一种相关性是有意义的。比如,大数据分析可能会揭示从2006年到2011你那美国谋杀案比例与IE浏览器的市场份额是极度相关的,都呈急速下降趋势。但是很难相信这两者之间有什么因果关系。又比如,从1998到2007被诊断出的自闭症患者与有机食物的销售具有相关性(都呈急速上升趋势),但是这种相关性本身不会告诉我们饮食和自闭症的关系。

大数据只能是辅助工具

第二,大数据可以辅助科学调查,但不可能成功地完全代替。比如,分子生物学家很想从潜在的DNA序列中推断出蛋白质的三维结构,有一些科学家已经在用大数据来解决这个难题。但是没有任何科学家认为你可以完全依靠处理数据来解决这个难题,不论这个数据分析是多么的强有力,你依旧需要基于对物理和生物化学的理解上来处理这些数据。

基于大数据的工具易造假

第三,基于大数据的很多工具很容易造假。批改学生作文的大数据程序通常依赖于句子长度和用词的复杂性,数据表明这和老师批改的分数很相关。但是一旦学生知道这个程序如何运作,他们就开始写一些长句子并用晦涩的词语而不是去学会如何规范清晰的表达,组成连贯的篇章。甚至谷歌的著名的搜索引擎,这个通常被认为成功的大数据案例也不能免于信息繁杂,无用的搜索结果,一些人为的原因使得一些搜索结果排在前面(搜索广告)。

通过大数据下结论是有风险的

第四,即便大数据的结果没有人为地造假,但是它看上去也不那么有效。比如谷歌预测流感的案例曾经是大数据的典范。2009年,谷歌通过相当大的宣传称它可以通过分析与流感相关的搜索预测流感爆发的趋势,这种准确性和快速甚至超过了疾病控制和预防中心等官方机构。但是几年后,谷歌宣称的流感预测并没有得到好的结果,最近两年,它做的更多地是不准的预测。

最近一篇《科学杂志》的文章解释道,谷歌流感预测的失败很大程度上是因为谷歌搜索引擎自己在不断的更新,这个时候收集的数据未必能够适用于下一个时候收集的数据。正如统计学家冯启思(《数据统治世界》的作者)所说的,依赖于网站的大数据收集常常把一些用不同方法、有不同目的数据整合起来,有时候这会产生负面的影响。从这样的数据样本得出结论是需要冒风险的。

大数据的智能应用会导致错误被加强

第五个需要注意的就是“恶性循环”,这也是因为大量的数据都来自于网络。不论何时,大数据分析的信息源本身就是一种大数据产品,这很可能会导致恶性循环。谷歌翻译等翻译程序是从不同语言中抽取相似的文本去辨别这些语言的翻译模式,比如同样的维基百科条目有两种语言。这是一个很合理的策略,要不是有很多语言并不具有太多相似性,维基百科自己都可以用谷歌翻译写条目。在这种情况下,任何谷歌翻译的错误都会影响维基百科,而这又会反映到谷歌翻译上,使这种错误不断加强。

大数据可能会导致大错误

第六个需要担心的就是太多相关性导致的危险。如果你在两个变量中不断地寻找相关性,那么你很可能会纯粹出于偶然发现虚假的相关性,即便在这些变量中并没有实际意义的联系。缺乏谨慎的检查,大数据的量级会扩大这些错误。

听上去科学的解释未必正确

第七,大数据很容易对那些无法精确的问题给出听上去很科学的解释。比如在过去几个月,基于维基百科的数据给人们排名有两个不同的尝试:根据历史重要性或者文化贡献。其中一本书叫做《谁更强?历史人物真实的排名在哪里》,作者是电脑工程师Steven Skiena 和工程师Charles Ward,另一本叫做《万神殿》,来自于麻省理工学院媒体实验室项目。

这些尝试在某些方面是正确的,耶稣、林肯、莎士比亚确实是极为重要的人物,但是两者都犯了一些严重的错误。《谁更强?》指出法兰西斯.史考特.凯伊(Francis Scott Key )在历史上是19世纪最重要的作家,远远超过简·奥斯汀(第78名)和乔治·爱略特(第380名)。更严重的是,两本书呈现出了利用所谓的精确误导人,而在本质上是模糊升值无意义的。大数据可以把任何事都简化为数字,但是你不应该被这些“科学”的表现愚弄。

罕见事件,大数据不起作用

最后,大数据在分析那些普通事件很在行,但是在分析罕见事件常失败。比如,用大数据处理文本的程序如搜索引擎和翻译程序,常常依赖于所谓的“三字”:连续三个词的序列(比如“in a row”)。可靠的数据信息可以编制常规的三字模型,正是因为他们常出现,但是现有的数据并没有多到足够包括人们可能使用的所有“三字”,因为人们在不断创造新语言。

随便挑一个例子,Rob Lowe 最近为报纸写的书评有九个“三词序列”比如“dumbed-down escapist fare”,这在谷歌的文本里从未出现过。对于这些新鲜词汇谷歌有很多限制,谷歌将“dumbed-down escapist fare”西安翻译为德文然后再翻译为英文,最后出现了这样一个不合逻辑的词语“scaled-flight fare.”Lowe先生的本意和利用大数据的翻译真是完全不搭边。

等等,我们几乎忽略了最后一个问题:炒作。大数据的支持者宣称它是革命性的进步。但是即便是给出大数据的成功例子,比如谷歌流感趋势的预测,即便有用但对于一些更大的事这些显得微不足道。相比19世纪和20世纪的伟大发明比如抗生素,汽车,飞机,大数据所得出的东西实在算不了什么。

我们需要大数据,毫无疑问。但是我们也需要更加清醒的认识到,这只是一种每个人都可以分析的重要资源,并不是什么新技术。

是在讨论利用谷歌庞大的搜索数据来预测流感的爆发还是利用通话记录来预测恐怖活动,又或者是利用航空公司的数据找到买机票的最佳时机,大数据都可以帮上忙。将现代计算技术和数字时代众多的数据结合起来,似乎可以解决任何问题——犯罪,公共卫生,用语的变化,约会的危险,只要我们把这些数据利用起来。

似乎它的拥护者这样宣称。“在接下来的二十年,”记者帕特里克·塔克在他最近的大数据声明中这样写道,“是透明的未来,”“我们可以以一种前所未有的准确度预测未来的诸多领域,甚至包括一些长久以来被认为人类无法干预的领域。”但大数据其实从来没有听上去那么好。

大数据真的像说的那么好?毫无疑问大数据确实是一个有价值的工具,并在某些领域产生了至关重要的影响。比如,几乎近二十年人工智能计算机程序的成功,从谷歌的搜索引擎到IBM的沃森电脑问答系统,都包括了大量数据的处理。但是正是因为它最近如此受欢迎并得到广泛应用,我们需要清晰的看待大数据究竟能做什么和不能做什么。

大数据能告诉我们是什么,但不能告诉我们为什么

首先,尽管大数据能够非常好地检测相关性,特别是那些用小数据集可能无法测出的微妙相关性,但是它并不会告诉我们哪一种相关性是有意义的。比如,大数据分析可能会揭示从2006年到2011你那美国谋杀案比例与IE浏览器的市场份额是极度相关的,都呈急速下降趋势。但是很难相信这两者之间有什么因果关系。又比如,从1998到2007被诊断出的自闭症患者与有机食物的销售具有相关性(都呈急速上升趋势),但是这种相关性本身不会告诉我们饮食和自闭症的关系。

大数据只能是辅助工具

第二,大数据可以辅助科学调查,但不可能成功地完全代替。比如,分子生物学家很想从潜在的DNA序列中推断出蛋白质的三维结构,有一些科学家已经在用大数据来解决这个难题。但是没有任何科学家认为你可以完全依靠处理数据来解决这个难题,不论这个数据分析是多么的强有力,你依旧需要基于对物理和生物化学的理解上来处理这些数据。

基于大数据的工具易造假

第三,基于大数据的很多工具很容易造假。批改学生作文的大数据程序通常依赖于句子长度和用词的复杂性,数据表明这和老师批改的分数很相关。但是一旦学生知道这个程序如何运作,他们就开始写一些长句子并用晦涩的词语而不是去学会如何规范清晰的表达,组成连贯的篇章。甚至谷歌的著名的搜索引擎,这个通常被认为成功的大数据案例也不能免于信息繁杂,无用的搜索结果,一些人为的原因使得一些搜索结果排在前面(搜索广告)。

通过大数据下结论是有风险的

第四,即便大数据的结果没有人为地造假,但是它看上去也不那么有效

比如谷歌预测流感的案例曾经是大数据的典范。2009年,谷歌通过相当大的宣传称它可以通过分析与流感相关的搜索预测流感爆发的趋势,这种准确性和快速甚至超过了疾病控制和预防中心等官方机构。但是几年后,谷歌宣称的流感预测并没有得到好的结果,最近两年,它做的更多地是不准的预测。

最近一篇《科学杂志》的文章解释道,谷歌流感预测的失败很大程度上是因为谷歌搜索引擎自己在不断的更新,这个时候收集的数据未必能够适用于下一个时候收集的数据。正如统计学家冯启思(《数据统治世界》的作者)所说的,依赖于网站的大数据收集常常把一些用不同方法、有不同目的数据整合起来,有时候这会产生负面的影响。从这样的数据样本得出结论是需要冒风险的。

大数据的智能应用会导致错误被加强

第五个需要注意的就是“恶性循环”,这也是因为大量的数据都来自于网络。不论何时,大数据分析的信息源本身就是一种大数据产品,这很可能会导致恶性循环。谷歌翻译等翻译程序是从不同语言中抽取相似的文本去辨别这些语言的翻译模式,比如同样的维基百科条目有两种语言。这是一个很合理的策略,要不是有很多语言并不具有太多相似性,维基百科自己都可以用谷歌翻译写条目。在这种情况下,任何谷歌翻译的错误都会影响维基百科,而这又会反映到谷歌翻译上,使这种错误不断加强。

大数据可能会导致大错误

第六个需要担心的就是太多相关性导致的危险。如果你在两个变量中不断地寻找相关性,那么你很可能会纯粹出于偶然发现虚假的相关性,即便在这些变量中并没有实际意义的联系。缺乏谨慎的检查,大数据的量级会扩大这些错误。

听上去科学的解释未必正确

第七,大数据很容易对那些无法精确的问题给出听上去很科学的解释。比如在过去几个月,基于维基百科的数据给人们排名有两个不同的尝试:根据历史重要性或者文化贡献。其中一本书叫做《谁更强?历史人物真实的排名在哪里》,作者是电脑工程师Steven Skiena 和工程师Charles Ward,另一本叫做《万神殿》,来自于麻省理工学院媒体实验室项目。

这些尝试在某些方面是正确的,耶稣、林肯、莎士比亚确实是极为重要的人物,但是两者都犯了一些严重的错误。《谁更强?》指出法兰西斯.史考特.凯伊(Francis Scott Key )在历史上是19世纪最重要的作家,远远超过简·奥斯汀(第78名)和乔治·爱略特(第380名)。更严重的是,两本书呈现出了利用所谓的精确误导人,而在本质上是模糊升值无意义的。大数据可以把任何事都简化为数字,但是你不应该被这些“科学”的表现愚弄。

罕见事件,大数据不起作用

最后,大数据在分析那些普通事件很在行,但是在分析罕见事件常失败。比如,用大数据处理文本的程序如搜索引擎和翻译程序,常常依赖于所谓的“三字”:连续三个词的序列(比如“in a row”)。可靠的数据信息可以编制常规的三字模型,正是因为他们常出现,但是现有的数据并没有多到足够包括人们可能使用的所有“三字”,因为人们在不断创造新语言。

随便挑一个例子,Rob Lowe 最近为报纸写的书评有九个“三词序列”比如“dumbed-down escapist fare”,这在谷歌的文本里从未出现过。对于这些新鲜词汇谷歌有很多限制,谷歌将“dumbed-down escapist fare”西安翻译为德文然后再翻译为英文,最后出现了这样一个不合逻辑的词语“scaled-flight fare.”Lowe先生的本意和利用大数据的翻译真是完全不搭边。

等等,我们几乎忽略了最后一个问题:炒作。大数据的支持者宣称它是革命性的进步。但是即便是给出大数据的成功例子,比如谷歌流感趋势的预测,即便有用但对于一些更大的事这些显得微不足道。相比19世纪和20世纪的伟大发明比如抗生素,汽车,飞机,大数据所得出的东西实在算不了什么。

我们需要大数据,毫无疑问。但是我们也需要更加清醒的认识到,这只是一种每个人都可以分析的重要资源,并不是什么新技术。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 云计算
    +关注

    关注

    39

    文章

    7698

    浏览量

    137075
  • 大数据
    +关注

    关注

    64

    文章

    8851

    浏览量

    137182
收藏 人收藏

    评论

    相关推荐

    智慧城市与大数据的关系

    智慧城市与大数据之间存在着密切的关系,这种关系体现在大数据对智慧城市建设的支撑和推动作用,以及智慧城市产生的大量数据大数据技术的应用需求。 大数据
    的头像 发表于 10-24 15:27 390次阅读

    云计算在大数据分析中的应用

    云计算在大数据分析中的应用广泛且深入,它为用户提供了存储、计算、分析和预测的强大能力。以下是对云计算在大数据分析中应用的介绍: 一、存储和处理海量数据 云计算提供了强大的存储和计算能力,可以存储
    的头像 发表于 10-24 09:18 240次阅读

    IP 地址大数据分析如何进行网络优化?

    一、大数据分析在网络优化中的作用 1.流量分析 大数据分析可以对网络中的流量进行实时监测和分析,了解网络的使用情况和流量趋势。通过对流量数据的分析,可以发现网络中的瓶颈和问题,为网络优化提供依据
    的头像 发表于 10-09 15:32 131次阅读
    IP 地址<b class='flag-5'>大数据</b>分析如何进行网络优化?

    基于Kepware的Hadoop大数据应用构建-提升数据价值利用效能

    处理超大数据集。 Hadoop的生态系统非常丰富,包括许多相关工具和技术,如Hive、Pig、HBase等,这些工具可以方便地构建复杂的大数据应用。Hadoop广泛应用于各种场景,包括数据处理和分析、
    的头像 发表于 10-08 15:12 99次阅读
    基于Kepware的Hadoop<b class='flag-5'>大数据</b>应用构建-提升<b class='flag-5'>数据</b>价值利用效能

    使用CYW20829的BLE进行最大数据发送应用,BLE丢失数据如何解决?

    我目前正在使用 CYW20829 的 BLE 进行最大数据发送应用,我使用的是 FREERTOS(例程 Bluetooth_LE_GATT_Throughput_Server 是我的参考),蓝牙被
    发表于 07-23 07:56

    大数据在军事方面的应用

    智慧华盛恒辉大数据在军事方面的应用广泛且深入,涵盖了战争决策、情报分析、装备研发、后勤保障、科研方法、管理水平、作战能力和信息化建设等多个方面。以下是对这些应用的详细归纳: 智慧华盛恒辉一、战争决策
    的头像 发表于 07-16 09:44 762次阅读

    大数据采集系统分为几类

    大数据采集系统是大数据生态系统中的重要组成部分,它负责从各种数据源收集、整合和存储数据。根据不同的数据源、采集方法和应用场景,
    的头像 发表于 07-01 15:44 1260次阅读

    大数据在军事方面的应用有哪些

    智慧华盛恒辉大数据在军事方面的应用涵盖了多个方面,这些应用不仅提高了军事管理的效率和水平,也极大地提升了军队的作战能力和情报获取能力。以下是大数据在军事方面的主要应用: 智慧华盛恒辉战争决策辅助
    的头像 发表于 06-23 10:34 786次阅读

    CYBT-343026传输大数据时会丢数据的原因?

    我正在使用 CYBT-343026 (CYW-20706 Silicon) 模块。 我根据 SPP 样本制作了一操作 SPP 的应用程序。 但是,传输大数据时有时会丢失数据。 它从
    发表于 03-01 15:04

    通过CY7C68013A想实现一generic HID设备,如何修改描述符及端点最大数据包的大小?

    通过CY7C68013A想实现一generic HID设备,使用一中断型输入端点和一中断型输出端点,最大数据包长度均为1024(或512?)字节,请问基于CY3684开发套件提供
    发表于 02-28 06:37

    大数据技术是干嘛的 大数据核心技术有哪些

    大数据技术是指用来处理和存储海量、多类型、高速的数据的一系列技术和工具。现如今,大数据已经渗透到各个行业和领域,对企业决策和业务发展起到了重要作用。本文将详细介绍大数据技术的概念、发展
    的头像 发表于 01-31 11:07 2940次阅读

    大数据技术如何为精益管理赋能?

    随着科技的飞速发展,大数据技术已经逐渐渗透到各个领域,为企业带来了前所未有的变革。在精益管理领域,大数据技术的运用更是为企业管理带来了诸多优势,为企业高效运营注入了新的活力。 一、大数据技术为精益
    的头像 发表于 12-19 09:58 557次阅读

    Get职场新知识:做分析,用大数据分析工具

    为什么企业每天累积那么多的数据,也做数据分析,但最后决策还是靠经验?很大程度上是因为这些数据都被以不同的指标和存储方式放在各自的系统中,这就导致了数据的分析口径和标准不一致,无法在同一
    发表于 12-05 09:36

    电梯物联网大数据平台是什么意思?

    电梯物联网大数据化平台是将电梯的使用时间和管理中的各项数据进行采集,整合及利用大数据分析能力和计算机视觉技术、结合关联分析、空间分析和多维分析等多种分析手段,挖掘对应数据业务算法模型。
    的头像 发表于 11-23 11:01 759次阅读

    移动网络中的大数据

    电子发烧友网站提供《移动网络中的大数据.pdf》资料免费下载
    发表于 11-10 10:43 0次下载
    移动网络中的<b class='flag-5'>大数据</b>