0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

更精确操纵光束:新型超表面设计推动光学物理学发展

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-06-27 06:27 次阅读

wKgZomZ8leKAaGyhAAGA8dMgH48342.jpg

多层自旋多路复用超表面在多路复用衍射神经网络(MDNN)中充当神经元,用于检测和分类矢量结构光束。

在充满活力的光学物理领域,研究人员正在不断突破如何操纵和利用光进行实际应用的界限。

据《Advanced Photonics Nexus》报道,哈尔滨工业大学(HIT)的一项研究介绍了一种分类和区分各种类型矢量结构光束(VSB)的方法,有望在光通信和量子计算领域取得重大进展。论文题为 “利用自旋多路衍射超表面同时分拣任意矢量结构光束”。

与以简单直线轨迹传播的传统光束不同,矢量结构光束可形成复杂、错综复杂的图案。这些光束不仅通过强度和波长等传统方式传输信息,还通过复杂的空间和偏振配置传输信息。它们的多功能性使其成为数据编码和通信的理想选择。

高效管理和利用 VSB 一直是一项重大挑战。它们固有的复杂性要求在实际应用中采用精确的分类和识别方法。提高光通信的效率、带宽和安全性,促进量子计算的创新,都取决于我们能否有效地处理这些错综复杂的光束。

哈工大研究团队研究的核心是一种基于自旋多路衍射超表面的紧凑、高效设备。这种经过精心设计的表面在微观层面上运行,可以非常精确地操纵光束。

该装置引导光束穿过一系列经过精细调整的超表面层。每一层都以精确的方式与光线相互作用,将光线逐步塑造成预定的图案。当光线从设备中射出时,每种 VSB 类型都被明显地分离出来,并可根据其独特的特征进行识别。这种同步分类能力为高维通信和量子信息处理带来了新的可能性。

技术影响包括:

□ 光通信: 以更高的速度传输更多数据并提高安全性仍然是一个关键目标。超表面处理复杂光束的能力表明,数据传输模式有可能发生转变,从而提高现有物理基础设施的效率。

□ 量子计算: 量子信息处理从根本上有别于经典计算。对光束的精确控制为加速量子计算系统提供了新的途径。

挑战与展望

虽然这项研究取得了巨大进步,但将该设备集成到现有技术框架中并优化其实际应用仍具有挑战性。不过,研究人员对其未来的影响持乐观态度,并在积极完善这项技术。

该研究的资深通讯作者丁卫强教授说:“我们在光操纵技术方面取得的突破,标志着我们向复杂光束的实际应用迈出了关键一步。通过促进对这些光束的精确控制,该技术不仅增强了现有能力,还为科学探索开辟了新途径。”

从实验室创新到广泛实际应用的过程是错综复杂的,但随着这些开创性的进步,通向日常集成的道路变得越来越清晰可见。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光通信
    +关注

    关注

    19

    文章

    896

    浏览量

    34143
  • 光束
    +关注

    关注

    0

    文章

    83

    浏览量

    10505
收藏 人收藏

    相关推荐

    2024年诺贝尔物理学奖为何要颁给机器学习?

    电子发烧友网报道(文/黄山明)近日,据新华社报道,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国科学家约翰·霍普菲尔德(John Hopfield)和英国裔加拿大科学家杰弗里·欣顿
    的头像 发表于 10-10 00:11 3966次阅读

    锁相放大器在物理学中的应用

    物理学的研究中,信号的精确测量与分析一直是科学实验的关键。随着技术的发展,许多实验中涉及到的信号越来越微弱,传统的仪器设备很难直接检测这些信号。如何有效地提取微弱信号,特别是从噪声中区分出有用信号
    的头像 发表于 02-11 16:35 102次阅读
    锁相放大器在<b class='flag-5'>物理学</b>中的应用

    神经网络理论研究的物理学思想介绍

    本文主要介绍神经网络理论研究的物理学思想 神经网络在当今人工智能研究和应用中发挥着不可替代的作用。它是人类在理解自我(大脑)的过程中产生的副产品,以此副产品,人类希望建造一个机器智能来实现机器文明
    的头像 发表于 01-16 11:16 482次阅读
    神经网络理论研究的<b class='flag-5'>物理学</b>思想介绍

    NVIDIA发布Cosmos™平台,助力物理AI系统发展

    NVIDIA近日宣布推出全新的NVIDIA Cosmos™平台,该平台专为自动驾驶汽车(AV)和机器人等物理AI系统而设计,旨在推动这些领域的快速发展。 Cosmos平台融合了先进的生成式世界
    的头像 发表于 01-08 15:36 395次阅读

    什么是表面光学技术?

    光学表面 目前,表面光学技术备受关注。简单来说,表面光
    的头像 发表于 12-18 06:25 355次阅读

    空间光调制器自适应激光光束整形

    调制器(SLM)在控制和调制激光方面具有无限的可能: 自适应光学分辨显微镜 光镊 激光材料处理 量子光学 SLM光束整形: 将一个高斯
    发表于 12-12 10:33

    线性光学和非线性光学有什么区别?

      光学物理学最古老的分支之一,早在公元前2500年就起源于埃及和美索不达米亚,当时人们用抛光石英发明了早期透镜。 《大英百科全书》将光学定义为 “与光的起源和传播、光所经历和产生的变化以及与之
    的头像 发表于 12-10 06:31 325次阅读

    无所不能的MATLAB|证明曲速引擎的物理学原理

    中随处可见,但这“科学”部分却始终无法实现。 据《大众机械》报道,“研究人员一直对曲速引擎的概念很感兴趣,这一概念由墨西哥物理学家明戈·阿尔库贝利于 1994 年首次提出。”“根据理论上的阿尔库贝利曲速引擎概念,航天器可以通过收缩前方空间和膨胀后方空间来实现光速飞
    的头像 发表于 12-04 09:50 356次阅读
    无所不能的MATLAB|证明曲速引擎的<b class='flag-5'>物理学</b>原理

    如何实现更精确的电流限制并避免损坏受测器件

    电子发烧友网站提供《如何实现更精确的电流限制并避免损坏受测器件.pdf》资料免费下载
    发表于 08-29 11:09 0次下载
    如何实现<b class='flag-5'>更精确</b>的电流限制并避免损坏受测器件

    高质量激光光束光学系统中的空间滤波

    空间滤波是光学中的一项关键技术,用于细化激光束,提高其质量,并最大限度地减少像差和不必要的衍射效应。通过采用透镜和光阑的组合,空间滤波选择性地从激光束中去除不想要的成分,例如噪声、衍射图案和空间
    发表于 08-14 11:54

    表面艾里光束发射器助力实现水下4K视频高速稳定传输

    2024年4月5日,《自然》期刊发表了科研团队的新研究成果:基于表面的全彩圆形自动聚焦艾里光束发射器,展现了在水下等复杂信道环境中的卓越光无线通信潜力。
    的头像 发表于 04-11 12:19 611次阅读
    <b class='flag-5'>超</b><b class='flag-5'>表面</b>艾里<b class='flag-5'>光束</b>发射器助力实现水下4K视频高速稳定传输

    什么是透镜技术,它如何彻底改变光学

    新的轻量化设计选项,而且表面的平坦特性还有助于避免传统曲面镜头中常见的图像变形失真的问题。 镜头的优点 大多数传统透镜设计使用凸面或凹面形状来聚焦或扩展入射光束。虽然在光轴上可以实现近乎理想的聚焦,但产生的图像可能
    的头像 发表于 04-07 06:33 661次阅读

    探讨三种构器件表面的加工方法

    表面是近年来出现一种新型光学器件,也被称为构器件。
    的头像 发表于 03-19 15:23 1049次阅读
    探讨三种<b class='flag-5'>超</b>构器件<b class='flag-5'>表面</b>的加工方法

    山河光电品牌升级为山河元景,表面光AI技术推动光学产业变革

    表面技术也日趋成熟,为光学新型器件和应用带来了无限可能,可预见的是,未来表面技术将会在光学器件
    的头像 发表于 03-11 16:42 685次阅读
    山河光电品牌升级为山河元景,<b class='flag-5'>超</b><b class='flag-5'>表面</b>光AI技术<b class='flag-5'>推动</b><b class='flag-5'>光学</b>产业变革

    基于表面的拉普拉斯光学微分处理器可用于光学成像

    近日,北京理工大学黄玲玲教授团队实现基于表面的拉普拉斯光学微分处理器,可以激发对入射角度具有选择性的环形偶极共振
    的头像 发表于 03-04 09:24 1459次阅读
    基于<b class='flag-5'>超</b>构<b class='flag-5'>表面</b>的拉普拉斯<b class='flag-5'>光学</b>微分处理器可用于<b class='flag-5'>光学</b>成像