毫米波 (millimeter wave ):波长为1~10毫米的电磁波称毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。毫米波的理论和技术分别是微波向高频的延伸和光波向低频的发展。毫米波具有更短的工作波长, 可以有效减小器件及系统的尺寸; 其次, 毫米波有着丰富的频谱资源,可以胜任未来超高速通信的需求。由于波长短, 毫米波用在雷达、成像等方面有着更高的分辨率。到目前为止, 人们对毫米波已开展了大量的研究, 各种毫米波系统已得到广泛的应用。随着第5代移动通信、汽车自动驾驶、安检等民用技术的快速发展, 毫米波将被广泛应用于人们日常生活的方方面面。毫米波技术方面,结合目前一些热门的毫米波频段的系统应用,如毫米波通信、毫米波成像以及毫米波雷达等。
毫米波应用
近年来, 毫米波器件性能的不断提高, 成本的不断降低, 有力促进了毫米波在各个领域的应用。目前基于毫米波频段的应用主要体现在毫米波通信、毫米波成像及毫米波雷达等方面。
毫米波通信
随着无线通信技术的飞速发展, 6 GHz 以下黄金通信频段的频谱已经非常拥挤, 很难满足未来无线高速通信的需求。然而, 与此相反的是, 在毫米波频段, 频谱资源丰富但仍然没有得到充分的开发利用。在移动通信方面,探索了毫米波移动通信系统场景、网络结构及空中接口。在目前开展的第5 代移动通信(5G) 研究中, 几个毫米波频段已经成为5G 候选频段。毫米波技术将会在5G的发展中起着举足轻重的作用。卫星通信覆盖范围广,是保障偏远地区和海上通信以及应急通信的重要手段,目前其工作频段主要集中在L、S、C、Ku 及Ka 波段。随着卫星通信研究的不断深入,已在尝试更高频段。
此外, 毫米波光载无线通信(RoF) 系统也得到了迅速的发展。光纤具有成本低、信道带宽大、损耗小、抗干扰能力强等优点, 成为现代通信系统中不可或缺的部分。正如上文提到的, 毫米波具有传输容量大、体积小等优点, 但也有空间传输损耗大等缺点。
毫米波RoF 系统结合了毫米波和光纤通信的优点, 是实现宽带毫米波通信远距离传输的有效手段。自从1990 年光载无线通信的概念被提出之后,这个领域目前在毫米波频段成为了研究热点,很多研究小组在不同的毫米波频段进行了研究, 比如60 GHz 、75-110 GHz、120 GHz 、220 GHz、250 GHz 等。
毫米波成像
利用毫米波穿透性、安全性等优点, 毫米波成像可有效地对被检测物体进行成像, 在国家安全、机场安检、大气遥感等方面得到了广泛的研究, 根据成像机理分为被动式成像和主动式成像。毫米波被动式成像是通过探测被测物自身的辐射能量, 并分辨不同物质辐射强度的差异来实现成像。被动式成像从机理上看是一种安全的成像方式, 不会对环境造成电磁干扰, 但对信号本身的强度以及接收机的灵敏度要求较高。国内外对毫米波被动式成像技术已开展了大量的研究。毫米波主动式成像主要是通过毫米波源发射一定强度的毫米波信号, 通过接收被测物的反射波,检测被测目标与环境的差异,然后进行反演成像。主动式成像系统可以对包括塑料等非金属物体进行检测, 其受环境影响较小, 获得的信息量大, 可以有效地进行三维成像。
毫米波雷达
毫米波雷达具有频带宽、波长短、波束窄、体积小、功耗低和穿透性强等特点。相比于激光红外探测, 其穿透性强的特点可以保证雷达能够工作在雾雨雪以及沙尘环境中, 受天气的影响较小。相比于微波波段的雷达, 利用毫米波波长短的特点可以有效减小系统体积和重量,并提高分辨率。这些特点使得毫米波雷达在汽车防撞、直升机避障、云探测、导弹导引等方面具有重要的应用。微波毫米波汽车防撞雷达主要集中在24 GHz和77 GHz 频段上, 是未来智能驾驶或自动驾驶的核心技术之一。在直升机毫米波防撞雷达的研究上, 人们特别关注毫米波雷达对电力线等的探测效果。
毫米波在大气遥感方面也有很重要的应用,其中代表性的有毫米波云雷达。毫米波云雷达主要针对降水云进行探测,,用于探测云内部宏观和微观参数,,反映大气热力及动力过程。由于毫米波波长短,在云探测中表现出很高的测量精度和分辨率, 具有穿透含水较多的厚云层等优势。
导热率,又称导热系数,反映物质的热传导能力,按傅立叶定律,其定义为单位温度梯度(在1m长度内温度降低1K)在单位时间内经单位导热面所传递的热量。热导率大,表示物体是优良的热导体;而热导率小的是热的不良导体或为热绝缘体。
5G手机以及硬件终端产品的小型化、集成化和多功能化,毫米波穿透力差,电子设备和许多其他高功率系统的性能和可靠性受到散热问题的严重威胁。要解决这个问题,散热材料必须在导热性、厚度、灵活性和坚固性方面获得更好的性能,以匹配散热系统的复杂性和高度集成性。
随着智能时代的来临,人们对手机的需求越来越高,手机的硬件配置也随之提高,CPU从单核到双核在逐渐提升至四核、八核,屏幕大小和分辨率也不断提升。伴随着手机硬件和性能提升所带来的则是手机发热越来越严重的问题,如果热量未能及时散发出去面临的将是手机发烫、卡顿、死机甚至爆炸等问题。
目前手机中使用的散热技术主要包括石墨散热、金属背板、边框散热、导热凝胶散热、热管散热、均温板等等。随着毫米波射频通讯的应用发展,低介电高导热绝缘的透波散热需求逐渐增加。
-
电磁波
+关注
关注
21文章
1450浏览量
53765 -
毫米波
+关注
关注
21文章
1917浏览量
64731 -
5G
+关注
关注
1353文章
48387浏览量
563575
发布评论请先 登录
相关推荐
评论