0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI绘图实践-用人工智能生图助力618大促

京东云 来源:jf_75140285 作者:jf_75140285 2024-07-10 09:39 次阅读

现在各种AI大模型大行其道,前有GhatGPT颠覆了我们对对话型AI的原有印象,后有Sora文生视频,让我们看到了利用AI进行创意创作的无限可能性。如今各大公司和团队都争相提出自己的大模型,各种网页端和软件应用也极大地降低了我们使用AI作为生产力的门槛。

我这次就为大家带来使用AI进行绘图的入门实践,为大促文章配图,绘制大促广告宣传海报,提升促销图的画质和精度,探索一下从这方面助力大促的新思路。

平台

现在的AI绘图主要用到的模型是SD(Stable Diffusion),它是一种稳定扩散模型,用于生成高质量的图像。这种模型是在传统的扩散模型DDPMs(Denoising Diffusion Probabilistic models)的基础上发展出来的。

wKgZomaNMn2ADWP4AAc73r03Vng910.png

经过多个版本的迭代和改进,这类模型已经能很好的执行“文生图”、“图生图”、“后期处理”等AI功能,甚至可以在一定程度上代替PhotoShop等图像处理软件的工作。

现在许多开发者都发布了基于SD模型的改进型模型,基本上所有的网页端和软件也都是基于此模型搭建的,要使用它进行AI绘画,主要有三种方法:

1.自己搭建基于SD的webui,在gitHub上有项目的源代码: https://github.com/AUTOMATIC1111/stable-diffusion-webui 。这种方式的优点是自由度高,可以根据自己的需求进行客制化改造,更新也最及时,但是要自己进行环境搭建,对于一般用户来说学习门槛较高,国内使用的话需要魔法,同时经过我的体验稳定性不高,经常会失败。

2.使用网页端应用,这类网站是基于stable-diffusion-webui 搭建的第三方平台,由他们负责维护和更新,并提供稳定的连接,用户只需要选择需要的模型和参数,输入提示词,就可以在线生成图片。

国内有:

Liblib Ai: https://www.liblib.art/

MJ: https://mj.wxcbh.cn/home/?from=AI05&strategy=drawing5&bd_vid=17724435435623318479#/mj

都不需要魔法 。

国外的像:Playground AI: https://playground.com/ ,每天有免费的体验次数,速度和质量也不错。

这类网站一般都有自己的模型市场,以供创作者们上传和下载自定义的模型,并且分享自己的绘图作品以及相关生图的参数,非常方便。但是一般都会收费,都会收费,都会收费,重要的事情说三遍。

3.PC端软件,这类软件一般也是基于SD模型进行封装,可以下载模型,设置参数并在本地生成图片,使用体验类似于PS等图片处理软件,但是由于整个生成过程在本地执行,比较依赖于本机算力,电脑性能不好的话生成会很慢,但是好处就是自定义程度相对较高,而且一般免费。

生图软件

我这次主要介绍软件的途径,使用的软件就是这款Draw Things,Mac端App Store免费下载,不需要魔法

他的界面是这样的:

wKgZomaNMn-AbUf4AAdbu8WBjmU532.png

参数设置区用于选择模型,采集器,步数和随机种子等参数,首次生成图片首先选择“文本到图像”模式。在这里我大致介绍一下涉及到的名词:

模型

模型是AI绘画的基础,一般的模型都是基于SD改进的,SD模型也有V1.0、V1.5、V2.0、V2.1等不同的迭代版本,不同的模型可以生成不同风格的图片,可以根据自己的需要进行选择,模型可以在DrawThings里进行下载和选择,当然也可以在Liblib Ai等网站上下载然后导入。

wKgZomaNMoCAQynPAAG8l8RyF8k609.png

模型分为几个主要的种类:

chekpoint(检查点)

它是完整模型的常见格式,模型体积较大,一般真人版的单个模型的大小在7GB左右,动漫版的在2-5个G之间。决定了图片的整体风格。chekpoint的后缀名是safetensors

有写实,科幻,漫画,广告等等风格

Lora

是一种体积较小的绘画模型,是对大模型的微调。可以添加Lora为图片创造更丰富的表现形式。与每次作画只能选择一个大模型不同,lora模型可以在已选择大模型的基础上添加一个甚至多个。一般体积在几十到几百兆左右。

Lora的后缀名也是safetensors,所以在安装的时候要注意,Lora要在规定的地方导入:

wKgaomaNMoSAJzwNAAEjQzDLYck189.png

Hypernetwork(超网络)

类似 LoRA ,但模型效果不如 LoRA,不能单独使用,需要搭配大模型使用



采样器

采样器也会在一定程度上影响图画风格,不同于模型,它一般是基于算法。选择对的采样器对于生成图片的质量至关重要,下面介绍一些主流的采样器类型:

DDIM和PLMS是早期SD专为扩散模型而设计的采样器。DPM和DPM++系列是专为扩散模型而设计的新型采样器。DPM++是DPM的改进版。

Euler a 比较适用于图标设计、二次元图像、小型场景等简单的图像数据生成场景。

DPM和DPM++系列非常适用于三维景象和复杂场景的描绘,例如写实人像。

Karras系列是专为扩散模型而设计的改进版采样器,有效提升了图片质量。

Euler a,DPM2 a, DPM++2S a和DPM++2S a Karras适合给图片增加创造性,随着迭代步数的提升,图片也会随之变化。不同的采样方法可能对不同的模型产生不同的影响,会影响生成图片的艺术风格,建议结合模型和迭代步数多做尝试。

步数

生图时,去噪重复的步数被称为采样迭代步数。

测试新的模型或Prompts效果时,迭代步数推荐使用10~15,可以快速获得结果,方便进行调整。当迭代步数太低时,生成的图像几乎无法呈现内容。20 ~ 30之间的迭代步数通常会有不错的效果。40步以上的迭代步数会需要更长的生图时间,但收益可能有限,除非在绘制动物毛发或皮肤纹理等。

过低或过高的初始分辨率都可能会让SD生图时无法正常发挥,建议参考基础模型的分辨率,配置合适的初始宽高

随机种子

随机种子会影响生图时的初始噪声图像。

当Seed=-1时,表示每次出图都会随机一个种子,使得每次生成的图都会不同。其他创作者上传图片的时候,一般会附带此图片对应的随机种子,可以参考它来生成类似的图片。点击可以生成一个随机的种子,长按则可以输入特定的随机种子。

提示词

提示词是生成图片时关键中的关键,它直接决定了图片内容,画面风格,场景,表情动作等一些列内容,在生成图片时,选择合适的提示词至关重要。

wKgZomaNMoSATIFNAAHvdXyuBPk101.png

提示词分为“正向提示词”和“反向提示词”,“正向提示词”代表你想要在图片中呈现的内容,反之“反向提示词”则是不想要在图片里具备的要素。

比如,我想要画一张“618西瓜大促”相关的宣传图,我就可以这样描述:

“许多人在湖里流动的水边吃西瓜,高质量的微型摄影”,翻译成英文:“Many people eat watermelons by the flowing water in the lake, with high-quality miniature photography”

将这段文字输入DrawThings的文本框,它会自动把整句话拆分成一个个提示词。

wKgaomaNMoWAKTf2AADXMVPkvIA764.png

当然,我们也可以直接填入想要绘制的提示词:

wKgZomaNMoaAerhTAAEYS8gmm-Y542.png

如上图所示,如果我们想着重强调某一个提示词,让AI绘制的时候更偏重一这一特征,就可以用括号把它包起来,然后在后面注明权重,这里我就把西瓜(watermelon)加重到了1.5权重,以便更加突出这一点。

“反向提示词”一般有:低质量,不适合上班时间浏览(NSFW),描绘人物的时候,糟糕的眼睛,多余的手指,扭曲,变形等等

wKgaomaNMoeAeK9-AAF769G_4g8097.png

其他

还有一些其他的参数,比如图片分辨率和比例,文本指导强度(越高越忠实呈现文本内容),以及一次生成的图片数量等等

wKgZomaNMoiAIODUAADZMAaUcI4703.png

设置好一切,就可以开始生成图片了,可以多尝试几张,从中挑选最合适的进行二次处理。

wKgaomaNMouAC4IkAA3qGjmg_io804.png



二次处理

如果对生成的图片有些细节不满意,可以利用“图像到图像”模式,然后选择强度。高分辨率修复的重绘强度为0时不会改变原图,30% 以下会基于原图稍微修正,超过 70% 会对原图做出较大改变,1 会得到一个完全不同的图像。

二次处理主要包括以下几个目的:

重绘图像元素

如果对图像中某部分的元素不满意,可以用“橡皮擦”擦除该部分,然后重新生成,让模型自动将擦数的部分重绘,甚至可以消除某部分图像元素,实测效果甚至好于PS。

扩图

对于一张图片,如果想要扩展边界部分,让模型绘制出额外的内容,可以首先重新设置图片的宽高。我这里原是图片是1088*2048,想要扩展左侧湖里的景象,就可以先将图片宽度增加到1536,然后移动图片到右侧贴紧图层边缘。然后最关键的一步,用“橡皮擦”工具,沿着想要扩展的那一边,细细的擦一道,这么做的目的是告诉模型,从这一部分开始重绘,风格要按照擦除的这部分来进行,然后重新生成

提升画质

最开始生成图片时,为了提高速度和效率,可以适当降低分辨率,的到合适的图片以后,可以重设分辨率和清晰度,重绘图片,达到提升画质的目的。当然,对于已经已经画好的第三方图片,也可以加载进来进行处理。

好了,本篇利用AI绘图进行实践的文章就介绍到这里,希望能够帮助到大家。在以后大促文章配图,和大促海报绘制方面为大家提供便利,助力618大促再创新高!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30162

    浏览量

    268427
  • 人工智能
    +关注

    关注

    1791

    文章

    46867

    浏览量

    237590
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    嵌入式和人工智能究竟是什么关系? 嵌入式系统是一种特殊的系统,它通常被嵌入到其他设备或机器中,以实现特定功能。嵌入式系统具有非常强的适应性和灵活性,能够根据用户需求进行定制化设计。它广泛应用于各种
    发表于 11-14 16:39

    AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这一章详细
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    非常高兴本周末收到一本新书,也非常感谢平台提供阅读机会。 这是一本挺好的书,包装精美,内容详实,干活满满。 关于《AI for Science:人工智能驱动科学创新》第二章“AI
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    。 5. 展望未来 最后,第一章让我对人工智能驱动的科学创新未来充满了期待。随着技术的不断进步和应用场景的拓展,AI将在更多领域发挥关键作用,从基础科学到应用科学,从理论研究到实践应用,都将迎来前所未有
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    、RISC-V在人工智能图像处理中的应用案例 目前,已有多个案例展示了RISC-V在人工智能图像处理中的应用潜力。例如: Esperanto技术公司 :该公司制造的首款高性能RISC-V AI处理器旨在
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家一起去了解: 人工智能究竟帮科学家做了什么?
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能
    发表于 08-22 15:00

    大模型应用之路:从提示词到通用人工智能(AGI)

    铺平道路。 基于AI大模型的推理功能,结合了RAG(检索增强生成)、智能体(Agent)、知识库、向量数据库、知识图谱等先进技术,我们向实现真正的AGI(通用人工智能)迈出了重要步伐。 为了方便大家理解,将
    的头像 发表于 06-14 10:20 2114次阅读
    大模型应用之路:从提示词到通<b class='flag-5'>用人工智能</b>(AGI)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    Aidlite-SDK模型推理 https://v2.docs.aidlux.com/sdk-api/aidlite-sdk/aidlite-python 人工智能 5G AIoT技术实践入门与探索_V2 59分
    发表于 05-10 16:46

    嵌入式人工智能的就业方向有哪些?

    。 国内外科技巨头纷纷争先入局,在微软、谷歌、苹果、脸书等积极布局人工智能的同时,国内的BAT、华为、小米等科技公司也相继切入到嵌入式人工智能的赛道。那么嵌入式AI可就业的方向有哪些呢? 嵌入式
    发表于 02-26 10:17

    NVIDIA 人工智能开讲 | 什么是 AI For Science?详解 AI 助力科学研究领域的新突破

    ”两大音频 APP上搜索“ NVIDIA 人工智能开讲 ”专辑,众多技术大咖带你深度剖析核心技术,把脉未来科技发展方向! AI For Science (亦称 “AI In Science” ),是
    的头像 发表于 12-25 18:30 953次阅读
    NVIDIA <b class='flag-5'>人工智能</b>开讲 | 什么是 <b class='flag-5'>AI</b> For Science?详解 <b class='flag-5'>AI</b> <b class='flag-5'>助力</b>科学研究领域的新突破

    英特尔、谷歌、英伟达运用人工智能推动处理器设计与生产

    两家著名的芯片设计软件企业,Cadence和Synopsys,均利用人工智能强化设计工具。谷歌展示了使用人工智能开发AI加速度器的方法。英伟达亦在产品制造过程中运用大量人工智能,替代低
    的头像 发表于 12-15 10:16 590次阅读