0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高压放大器在多波长干涉相位同步解调方法研究中的应用

Aigtek安泰电子 2024-07-10 18:20 次阅读

实验名称:基于激光相位分立调制的多波长干涉相位同步解调方法研究

研究方向:激光测量

测试目的:

在长度测量中,绝对距离测量(ADM)可实现高精度、大范围和瞬时距离测量,与相对位移测量(RDM)相比,不需要对干涉条纹进行连续计数即可实现精密测量,广泛应用于高端装备制造、大尺寸机械零部件的检测和飞机装配等领域。多波长干涉测量法是一种最基本的,也是应用最为广泛的绝对距离测量方法,其中多波长对应干涉相位的精确解调是最为关键的问题之一。

测试设备:ATA-2082高压放大器、激光器、半波片、分光镜、迈克尔逊干涉仪、测量角锥棱镜、纳米定位线性平台、非接触式电容传感器、反射镜、光电探测器

FDM双波长干涉光路实验装置

图:FDM双波长干涉光路实验装置

实验过程:

以FDM双波长干涉相位同步解调方法为例,对其进行了仿真分析及实验验证。搭建了所提出的FDM双波长干涉测量光路,进行了系统稳定性实验、纳米级位移测量实验、纳米级步进非线性误差实验、两位位移解调同步性实验、动态相位解调实验。

由于侧重于研究多波长干涉相位解调的性能,所以采用两个自由空间的频率稳定He-Ne激光器(632.991nm,633.429nm),主要通过纳米位移测量等实验分析相位解调的精度和非线性误差。光路中采用两个半波片(HWP)使激光光束的偏振方向与EOM的光轴(EO-PM-NR-C1,Thorlabs)成45°。采用两个EOM对两束激光以不同频率进行相位调制后在分光镜(BS)处合光。在迈克尔逊干涉仪中,测量角锥棱镜(M2)安装在纳米定位线性平台上。采用非接触式电容式传感器测量,线性平台具有亚纳米级分辨率和±1nm的可重复性,闭环行程范围和线性误差分别为15μm和0.03%。FDM干涉激光信号被反射镜(R2)反射后由光电探测器探测。使用定制的基于FPGAADC&DAC开发板进行信号处理,包括生成相位调制信号,获取FDM干涉信号和解调干涉相位。产生的相位调制信号由双通道高压放大器(ATA-2082,Aigtek)放大后用来驱动电光调制器EOM。相位调制信号和低通滤波器的设置与模拟信号相同(ω1=146kHz,ω2=195kHz,ωt=100Hz,ωL=49kHz)。通过调整高压放大器的放大倍数,将两个EOM的正弦相位调制深度均设置为约2rad。

1、稳定性实验

为了测试FDM干涉相位同步解调系统在测量镜M2静止时,环境因素对两路相位解调结果的影响,对EOM施加正弦加三角波复合调制,同时记录两路干涉信号解调相位的变化情况。实验结果如图2所示。

稳定性实验结果

图2:稳定性实验结果

从图2中可以看出:在1个小时内两路相位变化约为70°,每分钟约变化1.2°,对于干涉信号相位解调实验,一般能够在毫秒级时间内完成,上述目标漂移对多波长干涉测量结果的影响可忽略不计。

2、步进测量实验

为了测试FDM双波长干涉相位同步解调系统在纳米级范围内位移测量精度。在实验开始之前,先对光路进行微调,以保证光电检测器能够接收到正常的干涉信号。接着调节光电检测器的增益旋钮,以将位移测量信号的强度调至适当的大小。将测量镜安装在行程为15μm,重复定位精度为±1nm的P-753.1CD精密线性促动器上,从0开始使其以10nm的步长步进,步进到1μm,共100个点,导轨的步进速度设置为1μm/s。PC控制软件对实验过程中的解调位移和P-753.1CD精密线性促动器的位置进行了同步记录。实验结果如图3、图4所示。

第一路步进实验结果

图3:第一路步进实验结果

第二路步进实验结果

图4:第二路步进实验结果

为了清晰地观察,位移测量数据分别向上平移2μm。研制系统的线性位移测量数据与P-753.1CD精密线性促动器的定位数据间的最大偏差分别为1.64nm、1.61nm,两者都在±2nm范围内,标准偏差分别为0.81nm、0.75nm,均在1nm范围之内,说明FDM双波长干涉相位同步解调系统能够实现纳米级的测量精度。

3、非线性误差测量实验

为了测试FDM双波长干涉相位同步解调系统非线性误差的大小,将测量镜安装在行程为15μm,重复定位精度为±1nm的P-753.1CD精密线性促动器上,从0开始使其以10nm的步长步进,步进到3μm,共300个点,导轨的步进速度设置为1μm/s。每一次步进,实时的导轨位置和解调位移值是被同时记录的,直到测量结束,两路位移解调的结果如图5、图6所示,其中图5(a)、图6(a)表示系统所解调的位移测量值、精密导轨的位置以及每次步进的误差值,图5(b)、图6(b)是误差值的FFT分析结果。

第一路非线性误差测量和FFT分析结果

图5:第一路非线性误差测量和FFT分析结果

第二路非线性误差测量和FFT分析结果

图6:第二路非线性误差测量和FFT分析结果

由于外部环境的变化,如温度、CO2浓度等,此外P-753.1CD的运动方向与光束的方向也有一定的角度偏差,这些都使得位移解调结果具有线性误差,但不是非线性误差的范畴。所以图5和图6中表示的是去除了线性误差之后的位移误差。由于相位解调算法中的反正切操作,可能会引入周期为π的非线性误差,因此如果相位解调出现非线性误差,则会在二次谐波分量出现一个峰值。但是在图5和图6所示位移偏差的FFT分析中,二次谐波分量处两个位移偏差的非线性误差均小于0.3nm。在一阶条纹(周期为2π)处的0.6nm的较大非线性误差,是由实验设置中PBS的偏振泄漏引入,而不是由相位解调系统引起,说明了FDM双波长干涉相位同步解调系统具有较小的非线性误差。

4、两路位移解调同步性实验

为了测试FDM双波长干涉相位同步解调系统中两路相位解调的一致性。将测量镜安装在行程为15μm,重复定位精度为±1nm的P-753.1CD精密线性促动器上,从0开始使其以10nm的步长步进,步进到500nm,共50个点,导轨的步进速度设置为1μm/s。每一次步进,实时的导轨位置和解调位移值被同时记录,直到测量结束,两路位移解调的结果及其差值如图7所示。

两路相位解调同步性实验

图7:两路相位解调同步性实验

为了清晰地观察,第一路的位移测量数据向上平移200nm。图中可以清晰看出,两路解调位移偏差在±2nm范围内,证明了FDM双波长干涉相位解调系统中的两路位移解调具有良好的同步性。

5、动态相位解调实验

为了测试系统动态相位同步检测的性能,实施了双路的动态相位解调实验。对于动态目标,总谐波失真(THD)为所有谐波的等效均方根(RMS)幅度与基频幅度的比值,用于评估相位解调的非线性。由于THD分析要求输入是单频信号,因此施加正弦电压以使测量镜M2以30Hz的频率在7rad的动态范围内运动。以10kHz的速率同时记录两个解调相位,如图8所示。根据图9所示的THD分析结果,检测到的相位1和相位2的基频分别为29.91Hz和29.99Hz,THD分别为7.65%和7.70%,信噪比(SINAD)均为21.64dB,证明了所提出的动态相位同步检测方案的可行性。

两路正弦相位解调结果

图8:两路正弦相位解调结果

THD分析结果

图9:THD分析结果

实验结果:

在FDM双波长干涉相位同步解调系统验证实验中:系统稳定性实验结果良好,具备所需要的测量实验条件;在纳米位移测量实验中,最大的步进误差不超过±2nm,而标准偏差不大于1nm;通过纳米级的非线性误差测量实验,证明了该方法的非线性误差较小,在0.4nm以下;两路位移解调同步性实验中,两路实时解调位移差值在±2nm范围内,验证了两路相位解调具有较高的同步性;动态相位解调实验中,施加线性变化的正弦电压使测量镜以30Hz的频率在7rad的动态范围进行移动,以10kHz的速率同时记录两个解调相位,检测到的相位1和相位2的基频分别为29.91Hz和29.99Hz,THD分别为7.65%和7.70%,SINAD均为21.64dB。通过上述实验,验证了FDM双波长干涉相位解调系统具有良好的性能。

安泰ATA-2082高压放大器:

ATA-2082高压放大器指标参数

图:ATA-2082高压放大器指标参数

本文实验素材由西安安泰电子整理发布。Aigtek已经成为在业界拥有广泛产品线,且具有相当规模的仪器设备供应商,样机都支持免费试用。西安安泰电子是专业从事功率放大器、高压放大器、功率信号源前置微小信号放大器高精度电压源高精度电流源电子测量仪器研发、生产和销售的高科技企业。公司致力于功率放大器、功率信号源、计量校准源等产品为核心的相关行业测试解决方案的研究,为用户提供具有竞争力的测试方案,Aigtek已经成为在业界拥有广泛产品线,且具有相当规模的仪器设备供应商,样机都支持免费试用。



本文实验案例参考自知网论文《基于激光相位分立调制的多波长干涉相位同步解调方法研究》

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 高压放大器
    +关注

    关注

    4

    文章

    467

    浏览量

    14334
  • 激光测量
    +关注

    关注

    0

    文章

    33

    浏览量

    9254
收藏 人收藏

    评论

    相关推荐

    Aigtek高压放大器交变电场研究的应用

    实验名称:交变电场下聚乙烯中空间电荷分布研究 测试设备:高压放大器、压电传感器、示波器、电极等。 图1:交变空间电荷测试平台结构图 实验过程: 一、交变高压源 交变
    的头像 发表于 11-05 11:41 133次阅读
    Aigtek<b class='flag-5'>高压</b><b class='flag-5'>放大器</b><b class='flag-5'>在</b>交变电场<b class='flag-5'>研究</b><b class='flag-5'>中</b>的应用

    安泰高压放大器材料测试的应用研究

    高压放大器 材料测试的应用是一个重要而广泛的领域,涵盖了多种实验和研究方向。以下是关于高压
    的头像 发表于 08-19 15:22 218次阅读
    安泰<b class='flag-5'>高压</b><b class='flag-5'>放大器</b><b class='flag-5'>在</b>材料测试<b class='flag-5'>中</b>的应用<b class='flag-5'>研究</b>

    Aigtek高压放大器的维护和保养方法有哪些

    采取的维护和保养方法高压放大器通常用于放大直流或交流信号,并将其输出为具有较大幅度的信号。这些放大器
    的头像 发表于 06-13 11:17 203次阅读
    Aigtek<b class='flag-5'>高压</b><b class='flag-5'>放大器</b>的维护和保养<b class='flag-5'>方法</b>有哪些

    Aigtek高压放大器纳米材料中的应用研究

    随着纳米材料科学的迅速发展,纳米材料各个领域中的应用也逐渐扩展。而高压放大器作为一种重要的电子元件,纳米材料研究
    的头像 发表于 06-06 11:30 350次阅读

    安泰高压放大器使用技巧说明

    高压放大器 是一种广泛应用于科学研究、工程测试和产业应用的电子设备。它们的主要功能是将低电压信号放大到高电压水平,以满足特定应用的要求。下
    的头像 发表于 05-22 11:42 436次阅读
    安泰<b class='flag-5'>高压</b><b class='flag-5'>放大器</b>使用技巧说明

    高压放大器在工作的应用实例有哪些

    高压放大器使用领域广泛,科学研究、教学、产品研发等各个领域。 高压放大器基于超声波控制细胞生长 在生物领域中,细胞
    的头像 发表于 03-28 16:16 266次阅读
    <b class='flag-5'>高压</b><b class='flag-5'>放大器</b>在工作<b class='flag-5'>中</b>的应用实例有哪些

    安泰高压放大器的选择方法有哪些

    高压放大器是一种用于增加信号电压的设备,常用于科研实验、工业检测等领域。选择适合的高压放大器对于实验的成功和结果的准确性至关重要。以下是一些选择高压
    的头像 发表于 03-04 11:31 409次阅读
    安泰<b class='flag-5'>高压</b><b class='flag-5'>放大器</b>的选择<b class='flag-5'>方法</b>有哪些

    Aigtek高压放大器应用范围是什么意思

    高压放大器是一种电子设备,主要用于放大高压信号。它在各个领域都有广泛的应用范围。以下是关于高压放大器
    的头像 发表于 02-28 14:54 294次阅读
    Aigtek<b class='flag-5'>高压</b><b class='flag-5'>放大器</b>应用范围是什么意思

    安泰高压放大器用途是什么呢

    高压放大器电子领域中扮演着至关重要的角色,其主要作用是将低电压信号放大到更高的电压水平。这种类型的放大器广泛用于各种应用
    的头像 发表于 02-06 14:53 340次阅读
    安泰<b class='flag-5'>高压</b><b class='flag-5'>放大器</b>用途是什么呢

    Aigtek高压放大器用途是什么呢

    高压放大器电子领域中扮演着至关重要的角色,其主要作用是将低电压信号放大到更高的电压水平。这种类型的放大器广泛用于各种应用
    的头像 发表于 02-04 17:34 476次阅读
    Aigtek<b class='flag-5'>高压</b><b class='flag-5'>放大器</b>用途是什么呢

    高压放大器设计要求是什么

    高压放大器 科学研究和工程应用扮演着至关重要的角色,特别是需要处理高电压信号的实验和应用
    的头像 发表于 01-08 15:37 296次阅读
    <b class='flag-5'>高压</b><b class='flag-5'>放大器</b>设计要求是什么

    高压放大器的工作原理和使用方法是什么

    高压放大器 是一种用于产生高电压输出信号的电子设备,通常用于科学研究、医疗、工业和通信领域。它的工作原理涉及到电路设计、放大器拓扑结构、元件选型和功率供应等多个方面。下面将详细介绍
    的头像 发表于 01-02 14:59 537次阅读
    <b class='flag-5'>高压</b><b class='flag-5'>放大器</b>的工作原理和使用<b class='flag-5'>方法</b>是什么

    高压放大器的使用方法是什么

    高压放大器是一种重要的电子设备,其主要功能是放大输入信号的电压,并输出更高电压的信号。它在各种工业、实验室和研究领域都有着广泛的应用。下面安泰电子官网将详细介绍
    的头像 发表于 12-27 18:07 482次阅读
    <b class='flag-5'>高压</b><b class='flag-5'>放大器</b>的使用<b class='flag-5'>方法</b>是什么

    高压放大器研究方向及其应用领域

    高压放大器是一种电子设备,用于将输入信号的电压增大到较高的输出电压。它在许多领域中有广泛的应用,包括通信、医疗、科学研究等。 高压放大器
    的头像 发表于 12-05 17:35 537次阅读
    <b class='flag-5'>高压</b><b class='flag-5'>放大器</b><b class='flag-5'>研究</b>方向及其应用领域

    高压放大器能够进行哪些领域和方向的研究

    领域和方向的研究应用。 高能粒子物理学研究高能粒子物理学实验,需要探测和测量来自加速器的高能粒子。这些粒子生成的信号电压往往较低,需要经过高压
    的头像 发表于 11-29 11:57 490次阅读
    <b class='flag-5'>高压</b><b class='flag-5'>放大器</b>能够进行哪些领域和方向的<b class='flag-5'>研究</b>