0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

陀螺仪LSM6DSV16X与AI集成(8)----MotionFX库解析空间坐标

嵌入式单片机MCU开发 来源:嵌入式单片机MCU开发 作者:嵌入式单片机MCU开 2024-07-18 10:43 次阅读

概述

本文将探讨如何使用MotionFX库解析空间坐标。MotionFX库是一种用于传感器融合的强大工具,可以将加速度计、陀螺仪和磁力计的数据融合在一起,实现精确的姿态和位置估计。本文将介绍如何初始化和配置MotionFX库,使用FIFO读取传感器数据,FIFO可以作为数据缓冲区,存储传感器的临时数据。这样可以防止数据丢失,特别是在处理器忙于其他任务时,并利用这些数据进行空间坐标的解析。本章案例使用上节的demo进行修改。

最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。

视频教学

[https://www.bilibili.com/video/BV1ux4y1t7RS/]

样品申请

[https://www.wjx.top/vm/OhcKxJk.aspx#]

源码下载

[https://download.csdn.net/download/qq_24312945/89475748]

开启CRC

串口设置

设置串口速率为2000000。

开启X-CUBE-MEMS1

设置加速度和角速度量程

这里设置加速度量程为4g和角速度为4000dps。

/* Set full scale */
  lsm6dsv16x_xl_full_scale_set(&dev_ctx, LSM6DSV16X_4g);
  lsm6dsv16x_gy_full_scale_set(&dev_ctx, LSM6DSV16X_4000dps);

速率选择

加速度和角速度的速率尽量大于100Hz。

设置FIFO速率

LSM6DSV16X传感器的FIFO控制寄存器3(FIFO_CTRL3)的内容,该寄存器用于选择陀螺仪和加速度计数据写入FIFO的批处理数据速率(BDR,Batch Data Rate)。以下是详细描述:
FIFO_CTRL3寄存器(地址09h),该寄存器包含两个主要字段:
● BDR_GY_[3:0]:选择陀螺仪数据的批处理速率。
● BDR_XL_[3:0]:选择加速度计数据的批处理速率。

将加速度计的数据速率(Output Data Rate, ODR)设置为60Hz。这意味着加速度计的数据将以每秒60次的频率批量写入FIFO。
将陀螺仪的数据速率设置为15Hz。这意味着陀螺仪的数据将以每秒15次的频率批量写入FIFO。

/* Set FIFO batch XL/Gyro ODR to 12.5Hz */
  lsm6dsv16x_fifo_xl_batch_set(&dev_ctx, LSM6DSV16X_XL_BATCHED_AT_480Hz);
  lsm6dsv16x_fifo_gy_batch_set(&dev_ctx, LSM6DSV16X_GY_BATCHED_AT_480Hz);

设置FIFO时间戳批处理速率

LSM6DSV16X传感器的时间戳批处理速率、温度数据批处理速率、增强的EIS陀螺仪输出批处理,以及FIFO的工作模式。这些配置确保传感器数据能够以适当的速率和模式进行批处理和存储,以满足不同的应用需求。

/* Set Output Data Rate */
  lsm6dsv16x_xl_data_rate_set(&dev_ctx, LSM6DSV16X_ODR_AT_480Hz);
  lsm6dsv16x_gy_data_rate_set(&dev_ctx, LSM6DSV16X_ODR_AT_480Hz);
  lsm6dsv16x_fifo_timestamp_batch_set(&dev_ctx, LSM6DSV16X_TMSTMP_DEC_1);

配置过滤链

lsm6dsv16x_filt_gy_lp1_set(&dev_ctx, PROPERTY_ENABLE);
  lsm6dsv16x_filt_gy_lp1_bandwidth_set(&dev_ctx, LSM6DSV16X_GY_ULTRA_LIGHT);
  lsm6dsv16x_filt_xl_lp2_set(&dev_ctx, PROPERTY_ENABLE);
  lsm6dsv16x_filt_xl_lp2_bandwidth_set(&dev_ctx, LSM6DSV16X_XL_STRONG);

初始化定义

/* USER CODE BEGIN 2 */
    printf("HELLO!n");
  HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_SET);
  HAL_GPIO_WritePin(SA0_GPIO_Port, SA0_Pin, GPIO_PIN_RESET);
    HAL_Delay(100);
//lsm6dsdtr_init();

  lsm6dsv16x_fifo_status_t fifo_status;
  stmdev_ctx_t dev_ctx;
  lsm6dsv16x_reset_t rst;

  /* Initialize mems driver interface */
  dev_ctx.write_reg = platform_write;
  dev_ctx.read_reg = platform_read;
  dev_ctx.mdelay = platform_delay;
  dev_ctx.handle = &SENSOR_BUS;

  /* Init test platform */
//  platform_init(dev_ctx.handle);
  /* Wait sensor boot time */
  platform_delay(BOOT_TIME);

  /* Check device ID */
  lsm6dsv16x_device_id_get(&dev_ctx, &whoamI);
    printf("LSM6DSV16X_ID=0x%x,whoamI=0x%x",LSM6DSV16X_ID,whoamI);
  if (whoamI != LSM6DSV16X_ID)
    while (1);

  /* Restore default configuration */
  lsm6dsv16x_reset_set(&dev_ctx, LSM6DSV16X_RESTORE_CTRL_REGS);
  do {
    lsm6dsv16x_reset_get(&dev_ctx, &rst);
  } while (rst != LSM6DSV16X_READY);

  /* Enable Block Data Update */
  lsm6dsv16x_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

  /* Set full scale */
  lsm6dsv16x_xl_full_scale_set(&dev_ctx, LSM6DSV16X_4g);
  lsm6dsv16x_gy_full_scale_set(&dev_ctx, LSM6DSV16X_4000dps);

  /*
   * Set FIFO watermark (number of unread sensor data TAG + 6 bytes
   * stored in FIFO) to FIFO_WATERMARK samples
   */
  lsm6dsv16x_fifo_watermark_set(&dev_ctx, FIFO_WATERMARK);
  /* Set FIFO batch XL/Gyro ODR to 12.5Hz */
  lsm6dsv16x_fifo_xl_batch_set(&dev_ctx, LSM6DSV16X_XL_BATCHED_AT_480Hz);
  lsm6dsv16x_fifo_gy_batch_set(&dev_ctx, LSM6DSV16X_GY_BATCHED_AT_480Hz);

  /* Set FIFO mode to Stream mode (aka Continuous Mode) */
  lsm6dsv16x_fifo_mode_set(&dev_ctx, LSM6DSV16X_STREAM_MODE);

  /* Set Output Data Rate */
  lsm6dsv16x_xl_data_rate_set(&dev_ctx, LSM6DSV16X_ODR_AT_480Hz);
  lsm6dsv16x_gy_data_rate_set(&dev_ctx, LSM6DSV16X_ODR_AT_480Hz);
  lsm6dsv16x_fifo_timestamp_batch_set(&dev_ctx, LSM6DSV16X_TMSTMP_DEC_1);
  lsm6dsv16x_timestamp_set(&dev_ctx, PROPERTY_ENABLE);


  lsm6dsv16x_filt_gy_lp1_set(&dev_ctx, PROPERTY_ENABLE);
  lsm6dsv16x_filt_gy_lp1_bandwidth_set(&dev_ctx, LSM6DSV16X_GY_ULTRA_LIGHT);
  lsm6dsv16x_filt_xl_lp2_set(&dev_ctx, PROPERTY_ENABLE);
  lsm6dsv16x_filt_xl_lp2_bandwidth_set(&dev_ctx, LSM6DSV16X_XL_STRONG);    


//  lsm6dsv16x_pin_int_route_t pin_int;
//  pin_int.fifo_th = PROPERTY_ENABLE;
//  lsm6dsv16x_pin_int1_route_set(&dev_ctx, &pin_int);


    lsm6dsv16x_init();
  /* USER CODE END 2 */

MotionFX文件

主要包含lsm6dsv16x_app.c和lsm6dsv16x_app.h,这两个文件主要负责初始化和管理LSM6DSV16X传感器的交互。它们提供了配置传感器、初始化通信接口以及读取传感器数据的功能。
该文件包含与LSM6DSV16X传感器交互所需函数的实现。它提供了配置传感器、初始化通信接口以及读取传感器数据的功能。
lsm6dsv16x_init(): 初始化MotionFX算法
lsm6dsv16x_motion_fx_determin(): 该函数主要用于读取传感器数据并使用MotionFX库进行数据融合处理

卡尔曼滤波算法

运行卡尔曼滤波传播算法MotionFX_propagate。

根据需要更新卡尔曼滤波器MotionFX_update。

需要注意的是这2各算法非常吃资源,需要注意MCU算力分配。

对应的demo在2.2.9有提供。

主程序执行流程

读取FIFO水印标志:
○ 使用 lsm6dsv16x_fifo_status_get() 函数读取FIFO水印标志,判断FIFO中的数据是否达到设定的阈值。
处理FIFO数据:
○ 如果FIFO水印标志被设置,读取FIFO中的数据数量。
○ 切换LED状态,用于指示数据读取状态。
○ 使用 lsm6dsv16x_fifo_out_raw_get() 函数逐项读取FIFO中的传感器数据。
○ 根据数据标签(tag)识别数据类型并处理:
■ 加速度计数据:设置 acc_flag 标志位,并转换数据单位。
■ 陀螺仪数据:设置 gyr_flag 标志位,并转换数据单位。
■ 时间戳数据:设置 deltatime_flag 标志位,并计算时间差。
调用姿态估计算法:
○ 当加速度计、陀螺仪和时间戳数据都已读取时,调用 lsm6dsv16x_motion_fx_determin() 函数进行姿态估计。
○ 重置标志位并更新时间戳。

/* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    uint16_t num = 0;
    /* Read watermark flag */
    lsm6dsv16x_fifo_status_get(&dev_ctx, &fifo_status);
        uint8_t acc_flag=0,gyr_flag=0;//加速度角速度标志位
        uint8_t deltatime_flag=0;//时间标志位
    if (fifo_status.fifo_th == 1) {
      num = fifo_status.fifo_level;
//      printf( "-- FIFO num %d rn", num);

      while (num--) {
        lsm6dsv16x_fifo_out_raw_t f_data;

        /* Read FIFO sensor value */
        lsm6dsv16x_fifo_out_raw_get(&dev_ctx, &f_data);
        datax = (int16_t *)&f_data.data[0];
        datay = (int16_t *)&f_data.data[2];
        dataz = (int16_t *)&f_data.data[4];
        ts = (int32_t *)&f_data.data[0];

        switch (f_data.tag) {
        case LSM6DSV16X_XL_NC_TAG:
                    acc_flag=1;
                    acc_x=lsm6dsv16x_from_fs4_to_mg(*datax);
                    acc_y=lsm6dsv16x_from_fs4_to_mg(*datay);
                    acc_z=lsm6dsv16x_from_fs4_to_mg(*dataz);
//          printf( "ACC [mg]:t%4.2ft%4.2ft%4.2frn",
//                  lsm6dsv16x_from_fs4_to_mg(*datax),
//                  lsm6dsv16x_from_fs4_to_mg(*datay),
//                  lsm6dsv16x_from_fs4_to_mg(*dataz));
          break;
        case LSM6DSV16X_GY_NC_TAG:
                    gyr_flag=1;
                    gyr_x=lsm6dsv16x_from_fs4000_to_mdps(*datax);
                    gyr_y=lsm6dsv16x_from_fs4000_to_mdps(*datay);
                    gyr_z=lsm6dsv16x_from_fs4000_to_mdps(*dataz);            
//          printf("GYR [mdps]:t%4.2ft%4.2ft%4.2frn",
//                  lsm6dsv16x_from_fs4000_to_mdps(*datax),
//                  lsm6dsv16x_from_fs4000_to_mdps(*datay),
//                  lsm6dsv16x_from_fs4000_to_mdps(*dataz));
          break;
        case LSM6DSV16X_TIMESTAMP_TAG:
                    deltatime_flag=1;
                    if(deltatime_first==0)//第一次
                    {
                        deltatime_1=*ts;
                        deltatime_2=deltatime_1;
                        deltatime_first=1;
                    }
                    else
                    {
                        deltatime_2=*ts;
                    }

//          printf( "TIMESTAMP [ms] %drn", *ts);

          break;
        default:
          break;
        }
                if(acc_flag&&gyr_flag&&deltatime_flag)
                {
                    lsm6dsv16x_motion_fx_determin();
                    acc_flag=0;
                    gyr_flag=0;
                    deltatime_flag=0;
                    deltatime_1=deltatime_2;            
                }    
      }
//      printf("------ rnrn");
    }
//            HAL_Delay(10);

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */

lsm6dsv16x_motion_fx_determin

● 外部变量声明:
○ acc_x, acc_y, acc_z: 加速度计数据。
○ gyr_x, gyr_y, gyr_z: 陀螺仪数据。
○ deltatime_1, deltatime_2: 时间戳数据。
○ out_num: 输出计数器。
● 读取并存储传感器数据:
○ 将全局变量中的加速度计和陀螺仪数据存储到 sensor_hub_data 结构体中。
● 准备 MotionFX 输入数据:
○ 将读取到的加速度计和陀螺仪数据转换为 MotionFX 库所需的单位(g 和 dps),并存储在 mfx_data_in 结构体中。
○ 初始化磁力计数据为 0。
● 计算时间差:
○ 计算两个时间戳之间的差值(单位:秒),并存储在 delta_time 数组中。
● 卡尔曼滤波算法:
○ 使用 MotionFX_propagate 函数运行卡尔曼滤波传播算法。
○ 使用 MotionFX_update 函数更新卡尔曼滤波器。

extern    float acc_x,acc_y,acc_z;
extern    float gyr_x,gyr_y,gyr_z;
extern uint32_t deltatime_1,deltatime_2;
extern int out_num;
void lsm6dsv16x_motion_fx_determin(void){

//    lsm6dsv16x_data_ready_t drdy;
//    
//    /* Read output only if new xl value is available */
//  lsm6dsv16x_flag_data_ready_get(&dev_ctx, &drdy);
//    
//    if (drdy.drdy_xl){
//        /* Read acceleration field data */
//        memset(data_raw_acceleration, 0x00, 3 * sizeof(int16_t));
//        
//        lsm6dsv16x_acceleration_raw_get(&dev_ctx, 
//                                                        data_raw_acceleration);
//        
//        sensor_hub_data.acceleration[0] =    lsm6dsv16x_from_fs2_to_mg(
//                                                        data_raw_acceleration[0]);
//        sensor_hub_data.acceleration[1] =    lsm6dsv16x_from_fs2_to_mg(
//                                                        data_raw_acceleration[1]);
//        sensor_hub_data.acceleration[2] =    lsm6dsv16x_from_fs2_to_mg(
//                                                        data_raw_acceleration[2]);
//    }
//    
//    if (drdy.drdy_gy){
//        memset(data_raw_angular_rate, 0x00, 3 * sizeof(int16_t));

//        /* 读取角速度数据,并将 角速度 转换为 dps */
//        lsm6dsv16x_angular_rate_raw_get(&dev_ctx,
//                                                                         data_raw_angular_rate);
//        sensor_hub_data.angular_rate[0] = lsm6dsv16x_from_fs2000_to_mdps(
//                                                         data_raw_angular_rate[0]);
//        sensor_hub_data.angular_rate[1] = lsm6dsv16x_from_fs2000_to_mdps(
//                                                         data_raw_angular_rate[1]);
//        sensor_hub_data.angular_rate[2] = lsm6dsv16x_from_fs2000_to_mdps(
//                                                         data_raw_angular_rate[2]);
//    }
//    
    // 将全局变量中的加速度计和陀螺仪数据存储在 sensor_hub_data 结构体中
    sensor_hub_data.acceleration[0]=acc_x;
    sensor_hub_data.acceleration[1]=acc_y;
    sensor_hub_data.acceleration[2]=acc_z;

    sensor_hub_data.angular_rate[0]=gyr_x;
    sensor_hub_data.angular_rate[1]=gyr_y;
    sensor_hub_data.angular_rate[2]=gyr_z;    

    /*----------------------------------------------------------------------------------

                                                      fx motion 移动算法(卡尔曼滤波)

        ----------------------------------------------------------------------------------*/
    MFX_input_t mfx_data_in;

    /* MotionFX 算法库,计算四元数,参考自 AlgoBuilded 生成代码 */
    mfx_data_in.acc[0] = sensor_hub_data.acceleration[0] * FROM_MG_TO_G;
    mfx_data_in.acc[1] = sensor_hub_data.acceleration[1] * FROM_MG_TO_G;
    mfx_data_in.acc[2] = sensor_hub_data.acceleration[2] * FROM_MG_TO_G;

    mfx_data_in.gyro[0] = sensor_hub_data.angular_rate[0] * FROM_MDPS_TO_DPS;
    mfx_data_in.gyro[1] = sensor_hub_data.angular_rate[1] * FROM_MDPS_TO_DPS;
    mfx_data_in.gyro[2] = sensor_hub_data.angular_rate[2] * FROM_MDPS_TO_DPS;

    mfx_data_in.mag[0] = 0;
    mfx_data_in.mag[1] = 0;
    mfx_data_in.mag[2] = 0; 

//    printf("Acceleration [mg]:t%4.2f t%4.2f t%4.2frn",mfx_data_in.acc[0], 
//                                                                        mfx_data_in.acc[1], mfx_data_in.acc[2]);



    /* 跟传感器输出速率ODR相关,delta_time为2次数据的间隔 */
//        float delta_time = DELATE_TIME;
    float delta_time[1];
    if(deltatime_2 >deltatime_1)
    {
        delta_time[0]=(float)((double)(deltatime_2-deltatime_1)*21.75f/1000000);
//        printf("d=%fn",delta_time[0]);
        /* 运行卡尔曼滤波传播算法 */
        MotionFX_propagate(mfxstate_6x, &sensor_hub_data.mfx_6x, &mfx_data_in, delta_time);
        /* 更新卡尔曼滤波器 */
        MotionFX_update(mfxstate_6x, &sensor_hub_data.mfx_6x, &mfx_data_in, delta_time, NULL);
    }
    else if(deltatime_1 >deltatime_2)
    {
        delta_time[0]=(float)((double)(0xffffffff-deltatime_2+deltatime_1)*21.75f/1000000);    
        /* 运行卡尔曼滤波传播算法 */
        MotionFX_propagate(mfxstate_6x, &sensor_hub_data.mfx_6x, &mfx_data_in, delta_time);
        /* 更新卡尔曼滤波器 */
        MotionFX_update(mfxstate_6x, &sensor_hub_data.mfx_6x, &mfx_data_in, delta_time, NULL);        
    }
    else if(deltatime_1==deltatime_2)
    {
        delta_time[0]=0.0f;    
    }
//    /* 运行卡尔曼滤波传播算法 */
//    MotionFX_propagate(mfxstate_6x, &sensor_hub_data.mfx_6x, &mfx_data_in, &delta_time);
//    /* 更新卡尔曼滤波器 */
//    MotionFX_update(mfxstate_6x, &sensor_hub_data.mfx_6x, &mfx_data_in, &delta_time, NULL);

    /* 将四元数存储到数组,方便后续操作 */
//    Quaternions_data[0] = sensor_hub_data.mfx_6x.quaternion[0];
//    Quaternions_data[1] = sensor_hub_data.mfx_6x.quaternion[1];
//    Quaternions_data[2] = sensor_hub_data.mfx_6x.quaternion[2];
//    Quaternions_data[3] = sensor_hub_data.mfx_6x.quaternion[3];

    /* 按照 VOFA+ 的 FireWater 数据协议格式,输出四元数数据 */
    /* 斜视图 右前上视角:scalar | x | y | z */
//    printf("%f, %f, %f, %f n",Quaternions_data[3],
                        Quaternions_data[1],Quaternions_data[2],Quaternions_data[0]);
    if(out_num< 10)// 每10次输出一次旋转数据
        out_num++;
    else
    {
    printf("%f, %f, %fn",sensor_hub_data.mfx_6x.rotation[0],
                    sensor_hub_data.mfx_6x.rotation[1],sensor_hub_data.mfx_6x.rotation[2]);
        out_num=0;
    }
}

欧拉角简介

欧拉角(Euler Angles)是一种表示三维旋转的方式,通过三个角度来描述物体在三维空间中的姿态。这三个角度通常称为滚转角(Roll)、俯仰角(Pitch)和偏航角(Yaw),它们分别表示绕物体的自身坐标系的三个轴的旋转。

横滚roll,俯仰pitch,偏航yaw的实际含义如下图:

● 优点
表示简单直观,易于理解。
适用于描述固定顺序的旋转操作。
● 缺点
存在万向节死锁问题(Gimbal Lock),即当俯仰角接近±90度时,会失去一个自由度,导致系统无法确定物体的姿态。
旋转顺序不同会导致不同的最终姿态,需要特别注意旋转顺序。

演示

初始位置和数据输出如下所示。

逆时针旋转90°

逆时针旋转180°

逆时针旋转270°

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 陀螺仪
    +关注

    关注

    44

    文章

    776

    浏览量

    98521
  • AI
    AI
    +关注

    关注

    87

    文章

    29928

    浏览量

    268237
  • 空间坐标
    +关注

    关注

    0

    文章

    4

    浏览量

    5573
收藏 人收藏

    评论

    相关推荐

    陀螺仪LSM6DSV16XAI集成(1)----轮询获取陀螺仪数据

    本文将介绍如何使用 LSM6DSV16X 传感器来读取数据。主要步骤包括初始化传感器接口、验证设备ID、配置传感器的数据输出率和滤波器,以及通过轮询方式持续读取加速度、角速率和温度数据。读取到的数据
    的头像 发表于 12-18 10:49 1541次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(1)----轮询获取<b class='flag-5'>陀螺仪</b>数据

    陀螺仪LSM6DSV16XAI集成(2)----姿态解算

    LSM6DSV16X包含三轴陀螺仪与三轴加速度计。
    的头像 发表于 12-18 10:51 2056次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(2)----姿态解算

    陀螺仪LSM6DSV16XAI集成(3)----读取融合算法输出的四元数

    LSM6DSV16X 特性涉及到的是一种低功耗的传感器融合算法(Sensor Fusion Low Power, SFLP). 低功耗传感器融合(SFLP)算法:
    的头像 发表于 12-18 10:53 1109次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(3)----读取融合算法输出的四元数

    陀螺仪LSM6DSV16XAI集成(7)----FIFO数据读取与配置

    LSM6DSV16X是一款高性能、低功耗的6轴IMU传感器,集成了3轴加速度计和3轴陀螺仪。本文将详细介绍如何配置和读取LSM6DSV16X
    的头像 发表于 07-18 10:40 1325次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(7)----FIFO数据读取与配置

    陀螺仪LSM6DSV16XAI集成(9)----中断获取FIFO数据并应用MotionFX解析空间坐标

    本文将探讨如何使用中断机制获取FIFO数据并应用MotionFX解析空间坐标MotionFX
    的头像 发表于 07-18 10:46 943次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(9)----中断获取FIFO数据并应用<b class='flag-5'>MotionFX</b><b class='flag-5'>库</b><b class='flag-5'>解析</b><b class='flag-5'>空间</b><b class='flag-5'>坐标</b>

    驱动LSM6驱动LSM6DS3TR-C实现高效运动检测与数据采集(7)----MotionFX解析空间坐标DS3TR-C实现高效运动检测与数据采

    本文将探讨如何使用MotionFX解析空间坐标MotionFX
    的头像 发表于 07-18 11:02 1038次阅读
    驱动<b class='flag-5'>LSM6</b>驱动<b class='flag-5'>LSM6</b>DS3TR-C实现高效运动检测与数据采集(7)----<b class='flag-5'>MotionFX</b><b class='flag-5'>库</b><b class='flag-5'>解析</b><b class='flag-5'>空间</b><b class='flag-5'>坐标</b>DS3TR-C实现高效运动检测与数据采

    陀螺仪LSM6DSOW开发(5)----MotionFX解析空间坐标

    本文将探讨如何使用MotionFX解析空间坐标MotionFX
    的头像 发表于 08-15 18:13 1514次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6</b>DSOW开发(5)----<b class='flag-5'>MotionFX</b><b class='flag-5'>库</b><b class='flag-5'>解析</b><b class='flag-5'>空间</b><b class='flag-5'>坐标</b>

    陀螺仪LSM6DSV16XAI集成(11)----融合磁力计进行姿态解算

    MotionFX包含用于校准陀螺仪、加速度计和磁力计传感器的例程。 将磁力计的数据与加速度计和陀螺仪的数据融合,可以大幅提高姿态估计的精度。三轴加速度计提供设备的倾斜信息,
    的头像 发表于 09-06 16:57 1794次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(11)----融合磁力计进行姿态解算

    LSM6DSV16X基于MLC智能笔动作识别(2)----MLC数据采集

    MLC 是“机器学习核心”(Machine Learning Core)的缩写。在 LSM6DSV16X 传感器 中,MLC 是一种嵌入式功能,它使传感器能够直接运行基于决策树的机器学习算法。通过
    的头像 发表于 10-22 10:02 632次阅读
    <b class='flag-5'>LSM6DSV16X</b>基于MLC智能笔动作识别(2)----MLC数据采集

    请问lsm6dsv16x可以直接读取触摸手势吗?

    已经读出来了LSM6DSV16x的QVRmv值,也写出了单击的状态机。但是在写触摸滑动手势时没有找到好的计算方式。请问是不是有直接读出这些手势的函数?
    发表于 07-02 08:14

    求助,是否有在LSM6DSV16X中使用传感器融合低功耗算法的示例

    你好我想知道是否有在 LSM6DSV16X 中使用传感器融合低功耗算法的示例。我想检索当前的 Heading、Pitch 和 Roll 信息。或者我也很高兴有一个例子解释如何从 SFLP 中获取四元
    发表于 02-03 09:12

    ST LSM6DSV16X iNEMO惯性模块相关的使用信息和应用提示

    AN5763,LSM6DSV16X是一款ST的3 轴加速度计和 3 轴陀螺仪LSM6DSV16X 是系统级封装的 3 轴数字加速度计和 3 轴数字陀螺仪,具有数字 I²C、SPI
    发表于 08-31 11:12 0次下载

    陀螺仪LSM6DSV16XAI集成(5)----6D方向检测功能

    陀螺仪通常可以读取三个方向上的旋转,即绕X轴、Y轴和Z轴的旋转。每个方向上的旋转包括正向旋转和反向旋转,因此一共有六个位置。这六个位置分别是:1.X轴正向旋转、2.X轴反向旋转、3.Y
    的头像 发表于 01-09 16:14 1029次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(5)----<b class='flag-5'>6</b>D方向检测功能

    意法半导体发布LSM6DSV32X 6轴惯性模块

    意法半导体近日发布了其最新的LSM6DSV32X 6轴惯性模块(IMU),该模块集成了高性能的加速度计和陀螺仪。加速度计的最大量程达到32g,而陀螺
    的头像 发表于 05-13 09:59 603次阅读

    LSM6DSV16X基于MLC智能笔动作识别(1)----轮询获取陀螺仪数据

    本文将介绍如何使用 LSM6DSV16X 传感器来读取数据。主要步骤包括初始化传感器接口、验证设备ID、配置传感器的数据输出率和滤波器,以及通过轮询方式持续读取加速度、角速率和温度数据。读取到的数据
    的头像 发表于 10-16 10:38 238次阅读
    <b class='flag-5'>LSM6DSV16X</b>基于MLC智能笔动作识别(1)----轮询获取<b class='flag-5'>陀螺仪</b>数据