0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

FPGA在深度神经网络中的应用

CHANBAEK 来源:网络整理 作者:网络整理 2024-07-24 10:42 次阅读

一、引言

随着人工智能技术的飞速发展,深度神经网络(Deep Neural Network, DNN)作为其核心算法之一,在图像识别、语音识别、自然语言处理等领域取得了显著成果。然而,传统的深度神经网络模型通常在大内存、高计算力的GPU上进行训练和推理,这在资源受限的小型设备上应用时面临诸多挑战。FPGA(Field Programmable Gate Array,现场可编程门阵列)凭借其可编程性、高性能、低功耗等特点,逐渐成为深度神经网络在边缘计算和设备端推理的重要硬件平台。本文将详细探讨FPGA在深度神经网络中的应用,包括其优势、设计流程、关键技术以及实际应用案例。

二、FPGA在深度神经网络中的优势

  1. 高性能与低功耗 :相比GPU,FPGA在处理特定任务时可以实现更高的计算效率和更低的功耗。在深度神经网络中,FPGA可以通过定制化硬件流水线,优化数据路径和计算单元,从而提高推理速度和能效比。
  2. 灵活性与可重构性 :FPGA允许用户根据需求自定义硬件逻辑,实现算法的灵活配置和快速迭代。这种可重构性使得FPGA能够适应不同规模和复杂度的深度神经网络模型,满足不同应用场景的需求。
  3. 低延迟与实时性 :在边缘计算和实时处理场景中,FPGA的低延迟特性尤为重要。FPGA可以通过并行处理和流水线优化,显著降低深度神经网络推理的延迟,实现实时响应。

三、FPGA深度神经网络的设计流程

FPGA深度神经网络的设计流程通常包括以下几个步骤:

  1. 需求分析 :明确应用场景、性能指标和资源限制等需求,为设计提供指导。
  2. 模型选择与优化 :选择合适的深度神经网络模型,并通过剪枝、量化、低秩分解等方法进行模型优化,以减少计算复杂度和存储需求。
  3. 硬件架构设计 :根据优化后的模型,设计FPGA的硬件架构,包括计算单元、存储单元、控制单元和数据路径等。
  4. 代码实现与仿真 :使用硬件描述语言(如Verilog或VHDL)或高层次综合(HLS)工具实现硬件架构,并进行功能仿真和性能评估。
  5. 综合与布局布线 :将代码综合成FPGA的硬件电路,并进行布局布线优化,以满足时序和面积要求。
  6. 板级测试与验证 :在FPGA开发板上进行实际测试,验证硬件实现的正确性和性能指标。

四、FPGA深度神经网络的关键技术

  1. 神经网络加速器 :为了加速深度神经网络的推理过程,研究者们设计了多种FPGA加速器架构。这些加速器通过优化数据路径、计算单元和控制逻辑,实现了高效的并行处理和流水线优化。例如,DLAU、Deep-Burning、DeepX等加速器通过不同的技术手段,实现了对深度神经网络的加速和优化。
  2. 神经网络压缩与加速技术 :为了降低深度神经网络在FPGA上的资源消耗和功耗,研究者们提出了多种压缩与加速技术。这些技术包括模型剪枝、权重量化、低秩分解和知识蒸馏等,它们通过减少模型参数和计算复杂度,实现了对深度神经网络的压缩和加速。
  3. 高层次综合(HLS) :HLS技术简化了FPGA的开发流程,使得开发者可以使用高级语言(如C/C++)来描述算法,并通过编译器自动转换成FPGA的硬件电路。这大大降低了FPGA的开发难度和周期,提高了开发效率。

五、实际应用案例

FPGA在深度神经网络中的应用已经取得了显著成果。例如,在自动驾驶领域,FPGA被用于处理车载摄像头和雷达等传感器数据,实现实时目标检测和跟踪。在航空航天领域,FPGA被用于处理卫星图像和雷达数据,支持遥感监测和导航定位等任务。此外,FPGA还被广泛应用于手机、摄像头、智能家居消费电子产品中,实现人脸识别、语音识别等功能。

六、结论与展望

FPGA作为深度神经网络的重要硬件平台之一,凭借其高性能、低功耗、灵活性和可重构性等特点,在边缘计算和设备端推理中展现出巨大潜力。随着技术的不断进步和应用场景的不断拓展,FPGA在深度神经网络中的应用将更加广泛和深入。未来,我们可以期待更多创新性的FPGA加速器和压缩技术出现,为深度神经网络的发展注入新的动力。同时,随着ASIC和SoC等新型硬件平台的发展,FPGA也将与其他技术相互融合,共同推动人工智能技术的进步。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1628

    文章

    21722

    浏览量

    602896
  • 人工智能
    +关注

    关注

    1791

    文章

    47146

    浏览量

    238121
  • 深度神经网络

    关注

    0

    文章

    61

    浏览量

    4524
收藏 人收藏

    评论

    相关推荐

    详解深度学习、神经网络与卷积神经网络的应用

    如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线
    的头像 发表于 01-11 10:51 2017次阅读
    详解<b class='flag-5'>深度</b>学习、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用

    脉冲耦合神经网络FPGA上的实现谁会?

    脉冲耦合神经网络(PCNN)FPGA上的实现,实现数据分类功能,有报酬。QQ470345140.
    发表于 08-25 09:57

    基于赛灵思FPGA的卷积神经网络实现设计

    FPGA 上实现卷积神经网络 (CNN)。CNN 是一类深度神经网络处理大规模图像识别任务以及与机器学习类似的其他问题方面已大获成功。
    发表于 06-19 07:24

    如何设计BP神经网络图像压缩算法?

    ,并能在脑海中重现这些图像信息,这不仅与人脑的海量信息存储能力有关,还与人脑的信息处理能力,包括数据压缩能力有关。各种神经网络,多层前馈神经网络具有很强的信息处理能力,由于其采用B
    发表于 08-08 06:11

    解析深度学习:卷积神经网络原理与视觉实践

    解析深度学习:卷积神经网络原理与视觉实践
    发表于 06-14 22:21

    如何移植一个CNN神经网络FPGA

    )第二步:使用Lattice sensAI 软件编译已训练好的神经网络,定点化网络参数。该软件会根据神经网络结构和预设的FPGA资源进行分析并给出性能评估报告,此外用户还可以
    发表于 11-26 07:46

    深度神经网络是什么

    多层感知机 深度神经网络in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 与许忠传,林敏涛和华佳勇合作
    发表于 07-12 06:35

    EdgeBoard神经网络算子FPGA的实现方法是什么?

    FPGA加速的关键因素是什么?EdgeBoard神经网络算子FPGA的实现方法是什么?
    发表于 09-28 06:37

    卷积神经网络模型发展及应用

    network,DBN)[24], 从此拉开了深度学习大幕。随着深度学习理论的研究和发展,研究人员提 出了一系列卷积神经网络模型。为了比较不同模型 的质量,收集并整理了文献模型
    发表于 08-02 10:39

    FPGA去实现大型神经网络的设计

    1、加速神经网络的必备开源项目  到底纯FPGA适不适合这种大型神经网络的设计?这个问题其实我们不适合回答,但是FPGA厂商是的实际操作是很有权威性的,现在不论是Intel还是Xili
    发表于 10-24 16:10

    什么是深度学习?使用FPGA进行深度学习的好处?

    ) 来解决更复杂的问题,深度神经网络是一种将这些问题多层连接起来的更深层网络。这称为深度学习。目前,深度学习被用于现实世界
    发表于 02-17 16:56

    什么是神经网络?什么是卷积神经网络

    介绍卷积神经网络之前,我们先回顾一下神经网络的基本知识。就目前而言,神经网络深度学习算法的核心,我们所熟知的很多
    的头像 发表于 02-23 09:14 3448次阅读

    卷积神经网络深度神经网络的优缺点 卷积神经网络深度神经网络的区别

    深度神经网络是一种基于神经网络的机器学习算法,其主要特点是由多层神经元构成,可以根据数据自动调整神经元之间的权重,从而实现对大规模数据进行预
    发表于 08-21 17:07 4066次阅读

    深度神经网络与基本神经网络的区别

    探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向
    的头像 发表于 07-04 13:20 816次阅读

    深度神经网络雷达系统的应用

    深度神经网络(Deep Neural Networks,DNN)雷达系统的应用近年来取得了显著进展,为雷达信号处理、目标检测、跟踪以及识别等领域带来了革命性的变化。以下将详细探讨
    的头像 发表于 07-15 11:09 700次阅读