0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

无形的安检:当全面禁止人脸识别的欧洲开始“由脸观心”

脑极体 来源:脑极体 作者:脑极体 2024-07-28 10:15 次阅读

wKgZomaliXWACjpFAAqPhJj6RPI987.jpg

公共安全,就像是我们这个社会的“免疫力”,可能平时很少注意到它,一旦发生事故,说明危险已至,轻则“感冒”,重则“要命”。

近期发生的一些公共安全事件反映出,安检作为公共安全的防御屏障,是不够的。

比如7月19日,温州医科大学附属第一医院心血管内科的李晟医生,在门诊诊疗过程中,突然遭到一名持刀男子的袭击,经抢救无效不幸去世。更早时候,上海地铁轨交9号线合川路站内的持刀伤人案,则是在过了安检之后的出站验票处发生的。山西临汾铁路侯马西站候车室的水果刀伤人案,同样在站内捅伤两人。

事发之后,有人说,想要杜绝危险物品,安检要做到机场的严格程度,做不到就是形式主义。也有人说,地铁、医院、高铁站的安检进一步加强,通行效率会很低,基本要瘫痪了,还要投入大量安保资源,属于劳民伤财。

种种事件说明,安检可以检测有形的有害物品,却很难检测无形的有害情绪。这些有害情绪,比如极端仇恨、矛盾冲突、报复社会心理等,就像不定时炸弹,一旦爆发就会造成无辜伤亡。

因此,公共安全,不能止于检物。

AI情绪检测,就是一道提升公共安全“免疫力”的无形屏障。

根据科技媒体WIRED报道,目前英国火车站的摄像头,正在使用亚马逊的情绪检测系统,监控火车站内情况。一旦发现情绪异常人员,就会通知工作人员进一步查看。

情绪检测能在对个人隐私数据保护堪称严苛的欧洲国家落地,或许足以说明一些东西。

本文来聊聊,能让一贯保守的英国接受,AI情绪检测究竟做对了什么?必要性又在哪里?

wKgZomaliXaAMnIfAAKc5-7fSMQ506.jpg

据报道,采用了情绪识别算法智能摄像头,会被用来检测火车乘客的情绪,通过面部扫描来预测潜在情绪,从而发现盗窃、闯入者等异常行为。

这件事最难的地方,并不是技术,而是如何在人脸识别限制法规最严苛的欧洲国家,接受对公众开展面部检测?

欧洲对面部识别技术在公共场所的应用,经历了一个变化显著的过程:

全面禁止。自2017深度学习技术爆火以来,CV领域的人脸识别成为主流应用之一,而欧洲对此严格监管,在2019年12月出台的《人工智能白皮书(草案)》中,表示在公共场所使用人脸识别技术将被禁止3至5年。

反复摇摆。号称史上最严苛的AI和数据法规颁布之后,就有大量分析师和科技人士表示,这些限制极大地阻碍了欧洲人工智能技术的进步和应用的落地,导致AI产业发展阻滞。但欧洲对此的态度一直比较摇摆,2021年2月的《欧盟数据战略》等文件态度缓和,说会严格限制,但不会全面禁止,到了当年10月又通过决议,禁止警方在公共场所使用面部识别技术。

暂时缓和。最终在今年2024年3月13日,欧洲通过了具有里程碑意义的《人工智能法案》,对面部识别技术的态度有所缓和,禁止了“基于敏感生物特征(如面部识别)进行无目的的大规模监控的应用”,也对该技术的合理使用放了一马。

为什么会对AI情绪检测“特殊对待”呢?

这就要提到公共安全的“不可能三角”:成本、收益、体验。

公共安全“事前预防大于事后补救”。高风险事件一旦发生,“亡羊补牢”的代价往往是人的生命,所以应当采取更严格的事前监管。一般来说,就是安检。

但安检存在一个“不可能三角”,需要在投入成本、安全收益、公众体验之间进行复杂的权衡。

如果安检流程不够敏感,出现“漏检”,会给有害“病毒”可乘之机。而危险群体会对安检系统产生“耐药性”,就像病毒对药物的抵抗能力增强一样,找到安检流程的漏洞进行规避。

但我们也很清楚,在任何场所无差别地采用机场级别的安检水平,进行搜身式的违禁品查验,不仅会影响通行效率和民众出行体验,而且需要更为庞大的安检人员,带来高昂的成本支出,边际收益是很低的。

特别是欧洲的地铁、火车高铁站、景区,此前普遍没有安检,等于向危险品、恐怖威胁“大开方便之门”。而从头推行常态化安检,要从头开始部署安检人员、设备等成本,并教育公众改变长久以来的出行习惯,几乎是不可能被广泛接受的。

这种背景下,AI情绪检测的应用,有望为传统安检的“不可能三角”,找到一种新的解法。

wKgaomaliXiAVPXKAAIlmgboTcs057.jpg

AI情绪检测并不是一项新技术,为什么此时却成了欧洲公共安全的救命稻草?

这要从几个变化说起:

变化一是算法的进步,极大地增加了安全收益。

英国高铁站所采用的情绪检测系统,是亚马逊已经在电商、医疗、公共安全、营销等领域探索多年的Rekognition系统可以识别包括快乐、悲伤、愤怒、惊讶、厌恶、平静、困惑在内的多种情绪,2023年迭代之后,还可以识别“恐惧”。

比如在电商场景中,通过门店摄像头来判断消费者的情绪,以优化产品陈设;在个人娱乐场景中,亚马逊的Alexa等智能设备可以及时感知用户情绪,当用户处于愤怒或悲伤等负面情绪时,提供安慰或建议。

可以说,目前情感分析和情绪识别的算法已经相当成熟,准确度和检测精度可以达到在公共场所兼顾效率、安全和体验的复杂要求。

变化二是数字社会的持续推进,让AI情绪识别的成本可控。

智慧城市在全球多个国家和区域不断完善,用于城市安防的智能摄像头经过多年迭代,目前技术和产品已经相当成熟。其中,“软件定义”的智能摄像头可以在线加载不同的算法,来实现垂直的智能应用,无需更换硬件就能实现AI情绪检测的更新和升级,也不会带来过高的成本压力。

变化三是近年来,人们对公共安全的担忧和对隐私顾虑的下降,因此对情绪检测的接纳度较好。

随着世界政治局势和经济环境的动荡,很多国家的公众对公共安全的担忧有所增长,尤其是在非法移民增多的欧洲,跨国犯罪和矛盾冲突给公共安全带来了不少威胁。

这种背景下,AI情绪识别不仅能提前检测出潜在的紧张氛围和冲突迹象,避免情绪失控导致的公共安全事件,而且不像暴露面部隐私那样,让人感觉到不舒服。

这是因为,情绪检测所采集的数据并不具有“强识别性”。

正如《隐私的权利》中所说的,隐私是“不被打扰的权利(the right to be left alone)”。相比“强识别性”的人脸识别,公众场所的AI情绪检测并不会在危机尚未暴露时打扰到公众、涉足个人隐私信息,也就是说并不能通过情绪,对自然人进行唯一识别和认证,不会因此知道你姓甚名谁。这就极大地减少了公众的被监视感。

从这个角度说,AI情绪检测在成本、收益、体验上都达到了比较好的平衡,应该成为传统安检之外,一道公共安全的无形屏障。

wKgZomaliXmAakV_AAJ69w4uos0128.jpg

AI情绪检测,防止恶性极端安全事件,对于整个社会来说,绝对利大于弊。那么,咱们什么时候也能搞起来呢?

坦率地说,目前国内大中型城市的智能安防系统已经做得很不错了,想上线情绪检测算法并不难,难就难在,算法的国产化之路,还得走一阵

其中最大的障碍,是数据集不够多、不够好。

我采访过一位山东某高校的老师,对方利用深度学习技术,进行微表情的识别算法开发。微表情的特点是持续的时间非常短、运动幅度的变化较小、难以掩饰和抑制,所以很适合用来进行潜在危险人员的情绪检测。

微表情需要心理学实验来采集,再通过计算机进行分析处理。需要先给受试者看一些心理学家论证好的刺激源,诱发微表情的产生,用一个高速摄像机对着待测者的脸,让计算机把图像一帧一帧存储起来。收集好数据之后,还要进行标注,打上情绪标签,以及时空域特征,就是该表情发生的开始时刻、结束时刻以及高潮时刻。

该老师提到,在其团队建立MMEW数据库之前,针对微表情的研究,缺乏一些特别大的公开数据库,最大的数据库也仅有247个样本,而且图像分辨率不高。

既需要心理学实验,又要计算机工程,既然微表情数据集这么难,为什么要从头开始自己构建呢?

我们知道,情绪表达会受到文化、社会生活等背景的影响。而国际上的情绪图片,大多是基于外国人脸采集的数据,在识别中国面孔的情绪状态、意图和行为时,未必会很准确。所以,AI情绪检测在公共安防领域的真正应用,还需要从扎实构建国产高质量数据集做起。

另一个问题就是,有了算法,谁来卖?

更准确的说法是,谁来提供算力和一系列配套服务。情绪识别是一个复杂的过程,需要强大的计算能力来快速分析海量数据,并实时反馈情绪识别结果,对算力有着极高的需求。此外,AI是一个持续演进的技术,情绪检测模型需要不断学习和优化,以提高识别的准确性和泛化能力。以英国高铁站落地的Rekognition系统为例,是亚马逊AWS推出的云服务之一,在云端进行学习、分析和功能性改进。

而在国内,因为涉及公众信息数据,一定是私有化本地部署,最终核心竞争力的还是算法技术和ToB服务能力。所以,国内CV算法公司会比云厂商在该市场更具竞争力,但如何解决算力的成本问题、服务的人效问题,是算法公司长期存在的难题,需要更精巧合理的商业设计。

九层之台,起于垒土。尽管AI情绪检测的国产化之路,还有待从数据、算法、商业等层面一点点夯实,但用技术来提升公共安全“免疫力”,避免恶性安全事故,取得成本、效益、体验的平衡,应该逐步成为整个社会的共识和目标。

人是目的,而技术是手段。

捍卫人们生命权的技术,理应获得发展权,即使是对新技术极尽严苛的欧洲,这或许是AI情绪检测落地带给我们的最大启示。

wKgaomaliXuARP_zAAHCvIAWbGU108.jpg

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30072

    浏览量

    268337
  • 人脸识别
    +关注

    关注

    76

    文章

    4005

    浏览量

    81751
收藏 人收藏

    评论

    相关推荐

    带阻滤波器在人脸识别中的应用

    处理是至关重要的一环,而带阻滤波器作为信号处理领域的重要工具,其在人脸识别中的应用也显得尤为重要。本文将从带阻滤波器的基本原理、人脸识别的关键步骤、带阻滤波器在
    的头像 发表于 08-08 18:15 845次阅读

    人脸识别技术的可行性在于矛盾具有什么性

    矛盾的普遍性角度,探讨人脸识别技术的可行性,并分析其在实际应用中所面临的矛盾和问题。 二、人脸识别技术概述 人脸
    的头像 发表于 07-04 09:28 433次阅读

    人脸识别技术的优缺点有哪些

    人脸识别技术是一种基于人脸特征信息进行身份识别的生物识别技术。随着计算机视觉、深度学习等技术的发展,人脸
    的头像 发表于 07-04 09:25 1813次阅读

    人脸识别技术将应用在哪些领域

    人脸识别技术是一种基于人脸特征信息进行身份识别的生物识别技术。随着科技的发展,人脸
    的头像 发表于 07-04 09:24 2404次阅读

    人脸识别技术的原理介绍

    人脸识别技术是一种基于人脸特征信息进行身份识别的生物识别技术。它通过分析人脸图像,提取
    的头像 发表于 07-04 09:22 1044次阅读

    如何设计人脸识别的神经网络

    人脸识别技术是一种基于人脸特征信息进行身份识别的技术,广泛应用于安全监控、身份认证、智能门禁等领域。神经网络是实现人脸
    的头像 发表于 07-04 09:20 562次阅读

    人脸识别模型训练是什么意思

    人脸识别模型训练是指通过大量的人脸数据,使用机器学习或深度学习算法,训练出一个能够识别和分类人脸的模型。这个模型可以应用于各种场景,如安防监
    的头像 发表于 07-04 09:16 460次阅读

    人脸检测和人脸识别的区别是什么

    检测和人脸识别的区别。 定义 人脸检测是指在图像或视频中快速准确地找到人脸的位置,并将其从背景中分离出来的技术。人脸检测的目的是确定图像中是
    的头像 发表于 07-03 14:49 908次阅读

    人脸检测与识别的方法有哪些

    人脸检测与识别是计算机视觉领域中的一个重要研究方向,具有广泛的应用前景,如安全监控、身份认证、智能视频分析等。本文将详细介绍人脸检测与识别的方法。 引言
    的头像 发表于 07-03 14:45 626次阅读

    请问esp who人脸识别的脸部信息如何保存在sd卡中?

    esp who人脸识别的脸部信息如何保存在sd卡中?
    发表于 06-28 08:09

    人脸识别门禁方案:轻松实现刷开门、闸机及考勤管理

    和密码等方式,实现无接触、高效率的出入控制。刷开门的实现▲人脸捕获与跟踪人脸识别门禁系统首先需要对进入者的面部进行捕获,并自动地将其保存。这一步骤涉及到
    的头像 发表于 06-25 15:57 1120次阅读
    <b class='flag-5'>人脸</b><b class='flag-5'>识别</b>门禁方案:轻松实现刷<b class='flag-5'>脸</b>开门、闸机及考勤管理

    人脸识别终端 10寸人脸

    终端人脸识别
    深圳市远景达物联网技术有限公司
    发布于 :2024年04月22日 16:01:46

    公司人脸识别考勤门禁摄像机#人脸识别#智能摄像机

    AI人脸识别
    jf_07511428
    发布于 :2024年03月06日 22:52:08

    哪些场景要使用到人脸识别门禁考勤一体机

    伴随着刷识别设备的不断升温,越来越多的人把刷进出当成了习惯。正因为它不仅方便智能,仅需刷就能够完成门禁考勤,因此在很多项目场景中或多个领域中,
    的头像 发表于 03-05 13:59 504次阅读
    哪些场景要使用到<b class='flag-5'>人脸</b><b class='flag-5'>识别</b>门禁考勤一体机

    人脸识别技术的原理是什么 人脸识别技术的特点有哪些

    人脸检测是人脸识别的首要步骤。其目标是在图像或视频中准确地定位人脸的位置。人脸检测算法常用的方法有基于特征的方法、基于统计的方法和基于神经
    的头像 发表于 02-18 13:52 1623次阅读