0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用人工智能改变 PCB 设计

深圳市浮思特科技有限公司 2024-08-15 10:38 次阅读

人工智能PCB设计中展现出不可否认的潜力,但是工程师们自然对其影响有所顾虑。关于工作保障和责任的等问题常常浮现:人工智能会夺走我的工作吗?如果人工智能出错,我会被指责吗?

然而,人工智能助手不仅不是威胁,反而可以成为可靠的合作伙伴,它能够解释自己的决策并提供有价值的见解。它的选择理由能力促进了一个协作的环境,使经验较少的工程师能够在不感到威胁的情况下学习和成长。此外,人工智能的持续学习能力意味着它会与用户共同进化,持续改进并适应新挑战。

人工智能能做什么与不能做什么

诸如CELUS等软件平台能够将一个框图转化为电路设计师可以评估的合适解决方案,并生成原理图、材料清单(BoM)、平面设计提案以及兼容流行PCB布局软件(如Altium Designer、Autodesk Eagle和KiCad)的不同电子设计自动化(EDA)格式的封装。用户可以进一步修改所选的原生EDA格式解决方案,以优化设计,比如更改元件布局、添加多边形或铜层来填充平面、设置元件组、更改堆叠等。这些是布局所熟悉的常见设计选项。

它们使用户能够利用平台生成的原型所带来的优势,使用自己的设计规则和偏好而非默认设置,快速实现市场解决方案。这个交接过程也优化了不同软件平台的能力——人工智能非常适合快速将想法转化为设计,但许多专业和高级EDA平台则更适合生成包含所需CAM物理数据(如铜层、焊锡膜、NC钻孔数据等)的Gerber文件。

人工智能辅助设计与布局软件之间的界限并非固定。随着机器学习算法能力的提升,交接前可以进行更多准备工作。例如,在布局电力电子PCB时,通常需要使用在线计算器检查导线和孔的电流承载能力。现有的EDA程序通常有模块可以生成有用的电流密度图,但只有在知道电压水平和元件功率需求的情况下才能自动更改布局。

因此,这一设计过程的部分仍然是手动的,并且在很大程度上依赖设计者的技能和经验来选择合适的导线宽度和纵横比。然而,如果能将电源消耗信息提供给人工智能设计助手,这些数据就可以与布局软件同步,从而实现机器间通信,自动优化布局设计。尽管这样的能力尚未实现,但持续的进展表明,它们很快可能成为标准功能。

尽管大量数据已可以包含在基于云的元件数据库中(例如,Celus使用一种称为CUBO的丰富数据块格式,包含有关元件应用的相关信息,如信号映射引脚功能、供电要求等,以及任何相关的所需元件,如上拉电阻、去耦电容、晶体等,以实现完整功能),但通常在各个元件的数据表中可以获得更多数据。

因此,目前的重点是人工智能辅助的数据挖掘,以从数据表中的文本和图形信息中提取相关数据。然而,这一过程并不容易。不同制造商将等效信息放置在其数据表的不同页面上,因此数据挖掘者需要逐步浏览所有文本和图表,并识别,比如,制造商A数据表第1页给出的效率数字与制造商B数据表第3页图2中显示的数字是相同的。有时,信息根本缺失;往往,信息是可比的但并不直接等同。

例如,制造商A可能给出一个1秒耐压3 kVDC的绝缘耐压,而制造商B可能指定1分钟的耐压1 kVAC。哪个更好?答案通常取决于应用和项目定义。任务是从数据表中提取有用且有效的数据,这需要对能够处理不一致数据的人工智能算法的深厚知识。然而,随着人工智能算法的不断改进,提取和准确解释数据的能力也在提升,为未来几年全面的数据表数据挖掘功能铺平了道路。这一不断演变的格局凸显了人工智能在PCB设计中的变革潜力,为整个行业带来了持续的创新和效率提升。

人工智能辅助PCB设计的优势

人工智能辅助PCB设计相较于传统方法提供了几项显著优势:

速度与效率:人工智能驱动的设计平台通过自动化原理图生成、布局优化和元件选择等任务,简化设计过程。这种自动化显著减少了将产品推向市场所需的时间,使得设计迭代的周转时间更快,效率更高。

优化与性能:人工智能算法能够分析大量数据,以优化设计的性能、可靠性和性价比。通过考虑元件规格、信号完整性和制造约束等因素,人工智能辅助的设计能够实现比手工设计更高的性能和可靠性。

增强决策能力:人工智能算法能够通过提供实时反馈和建议,协助工程师做出明智的设计决策。这帮助工程师在设计过程中早期识别潜在问题,并更高效地探索替代选项,从而实现更好的整体设计结果。

定制化与适应性:人工智能驱动的设计平台可以根据每个项目的具体要求和用户偏好进行适应。它们能够整合自定义设计规则、约束和偏好,使工程师能够根据特定应用需求定制设计,同时保持与行业标准和最佳实践的兼容性。

知识转移与学习:人工智能辅助的设计平台可以作为宝贵的教育工具,尤其对于经验较少的工程师。通过解释设计决策、提供见解和建议,人工智能系统可以帮助工程师学习和提高技能,促进组织内部的职业发展和知识转移。

风险降低:人工智能算法可以通过提前识别潜在问题,如开路或短路连接和信号完整性问题,帮助降低设计风险。这种主动的风险管理方法可以减少代价高昂的设计错误和返工,从而最终实现更可靠和稳健的设计。

开始人工智能辅助PCB设计

开始人工智能辅助PCB设计的最简单方法之一是注册Celus设计平台,在此您将完成一个项目摘要,包含项目描述、所需功能、预期应用、项目应交付给哪个CAD工具,以及确定首选和排除的部件和制造商的可能性。这个阶段有两个特别重要的功能。

首先,它促使用户在盲目进入软件之前停下来思考他们想要做什么。其次,它向平台提供项目的基本参数,以便更好地定制建议和回复,符合项目目标。Celus设计平台在一开始就考虑到人工智能的开发,许多方面都像是提供建议和知识的高级设计工程师,为下一代设计工程师提供支持,他们可能充满创意,但在行业中经验尚浅。

一旦超过这一阶段,软件使用熟悉的拖放样式来创建系统架构框图。连接功能块的线可能是电源、数据或两者。指定连接类型并非必要,因为系统理解功能块如何相互连接。然而,假设电路设计师希望使用I2C数据连接,因为他们已经有现成的接口固件解决方案用于该数据类型,他们可以告诉系统他们的需求。当生成原理图时,系统会选择所需的接口。

这种人工智能在设计平台中的集成预示着PCB设计的范式转变,因为与传统PCB软件仅仅标记设计规则违规的方式不同,人工智能驱动的平台提供了一种变革性的方法。人工智能使系统能够轻松利用庞大的信息数据库,并具备建议明智解决方案的智能,能够有效地将项目目标转化为功能电子设计。

Recom正在将其包括30,000个部件的产品组合整合到Celus知识数据库中。通过利用这一丰富的数据,人工智能可以根据每个项目的具体要求进行细致的元件选择,从而提高效率并优化性能。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    6872

    浏览量

    88801
  • PCB设计
    +关注

    关注

    394

    文章

    4670

    浏览量

    85255
  • 人工智能
    +关注

    关注

    1791

    文章

    46820

    浏览量

    237463
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    嵌入式和人工智能究竟是什么关系? 嵌入式系统是一种特殊的系统,它通常被嵌入到其他设备或机器中,以实现特定功能。嵌入式系统具有非常强的适应性和灵活性,能够根据用户需求进行定制化设计。它广泛应用于各种
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用智能化管理。 其次,第6章通过多个案例展示了人工智能在能源科学中
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和深远影响。在
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,还促进了新理论、新技术的诞生。 3. 挑战与机遇并存 尽管人工智能为科学创新带来了巨大潜力,但第一章也诚实地讨论了伴随而来的挑战。数据隐私、算法偏见、伦理道德等问题不容忽视。如何在利用AI提升科研效率
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析: 一、RISC-V的基本特点 RISC-V
    发表于 09-28 11:00

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家一起去了解: 人工智能究竟帮科学家做了什么? 人工智能将如何
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    人工智能如何改变着各行各样

    人工智能的风起云涌,几乎颠覆了千行百业创新的节奏,今天的人工智能就如同挥舞着“指挥棒”一样,改变着各行各样本来的“模样”。
    的头像 发表于 07-19 10:58 460次阅读
    <b class='flag-5'>人工智能</b>如何<b class='flag-5'>改变</b>着各行各样

    大模型应用之路:从提示词到通用人工智能(AGI)

    大模型在人工智能领域的应用正迅速扩展,从最初的提示词(Prompt)工程到追求通用人工智能(AGI)的宏伟目标,这一旅程充满了挑战与创新。本文将探索大模型在实际应用中的进展,以及它们如何为实现AGI
    的头像 发表于 06-14 10:20 2104次阅读
    大模型应用之路:从提示词到通<b class='flag-5'>用人工智能</b>(AGI)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    英特尔、谷歌、英伟达运用人工智能推动处理器设计与生产

    两家著名的芯片设计软件企业,Cadence和Synopsys,均利用人工智能强化设计工具。谷歌展示了使用人工智能开发AI加速度器的方法。英伟达亦在产品制造过程中运用大量人工智能,替代低效的传统计算程序。
    的头像 发表于 12-15 10:16 581次阅读