0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于time-bin量子比特的高速率多路纠缠源——PPLN晶体应用

上海昊量光电设备有限公司 2024-08-30 12:27 次阅读

基于time-bin量子比特的高速率多路纠缠源

PPLN晶体应用

随着量子计算的不断发展,对于现代公钥加密的威胁也逐渐明显起来。而量子密钥分发(QKD)是克服这一威胁的方法之一,通过允许在多方之间安全地共享加密密钥,以抵御潜在的窃听者和量子计算器的解密能力。纠缠光子是此类应用的基本资源,因此纠缠分发是新兴量子网络计划的关键组成部分。来自加州理工学院的Andrew Mueller及其团队,在《Optica》期刊上发表了一篇题为"High-rate multiplexed entanglement source based on time-bin qubits for advanced quantum networks"的研究文章,介绍了他们开发的基于time-bin量子比特(qubits)的高速率多路复用纠缠源,而这一成果为构建前沿的量子网络提供了重要的基础技术。

Time-bin纠缠光子简介

以光子的不同时间模式编码的量子信息称为time-bin量子比特。在这类量子比特中,光子被编码到较早或者较晚到达的时间里,也就是说time-bin量子比特是光子到达时刻的相干叠加,描述一个光子处于两个时间单位的概率幅。

相对于基于偏振的系统相比,time-bin纠缠光子源具有相当的优势。在时间模式中,相对的相位是稳定的,因此在远距离的传输中不会发生严重的退相干。自由空间中用于传输的偏振态对于光纤中的双折射和散射十分敏感,而Time-bin这种量子比特编码形式凭借其在光纤中对抗退相干的鲁棒性,最适合于长距离传输。非等臂干涉仪是产生 Time-bin 量子比特的一种常用方法。

37eeb012-6688-11ef-89ff-92fbcf53809c.png

Time-bin编码的概念,利用单光子。光路用红线标出。光学元件:BS -分束器,M -反射镜,φ-长程总相位变化。取自Misiaszek-Schreyner, Marta. "Applications of single-photon technology." arxiv preprint arxiv:2205.10221 (2022).

实验内容

在本文中,通过将4.09-GHz的锁模激光器的光通过80ps的延迟干涉仪(12.5-GHz自由光谱范围)导入到非线性晶体中,以实现高速纠缠源。低抖动差分超导纳米线单光子探测器(SNSPDs)可以使time-bin量子比特解析为80ps宽的bin。而波长复用被用来实现多个高可见度的通道配对,这些配对共同加起来形成了一个高符合率。在低平均光子数(μL=5.6×10-5±9.0×10-6)时8通道系统可见度可达到平均99.3%,而在较高功率时(μH=5.0×10-3±3.0×10-4),演示时总符合率为3.55MHz,平均可见度为96.6%。装置具体分为纠缠光子源以及光谱复用以及探测部分。

纠缠光子源

下图展现了该实验装置。来自锁模激光器的脉冲光,中心波长为1539.47nm,通过一个80ps延迟线干涉仪。源干涉仪每个时钟周期产生两个脉冲,用于编码early/late的基础状态(|e⟩, |l⟩),随后由一个二次谐波生成(SHG)模块上转换,并通过一个type-0的自发参量下转换(SPDC)模块(Covesion),由下转换产生纠缠光子对。SPDC模块是一个光纤耦合进入的1cm氧化镁掺杂铌酸锂(MgO:PPLN)波导,具有18.3μm周期。上转换的脉冲在769nm处具有243 GHz(0.48nm)的全宽半高带宽。

380728a4-6688-11ef-89ff-92fbcf53809c.png

锁模激光器(Pritel UOC)的脉冲通过80ps延迟线干涉仪分成两束,然后在二次谐波生成+掺铒光纤放大器(SHG + EDFA)模块中进行上转换和放大。来自SHG模块的短PM光纤连接到一个非线性晶体(Mgo:PPLN),通过自发参量下转换(SPDC)生成光子对。粗波分复用(CWDM)模块将光子对的光谱分离成8个13nm宽的波段,分别围绕1530和1550nm,对应于信号和闲置光子。信号和闲置光子分别被引导到Bob和Alice站点。

光谱复用和探测

产生的光子对通过一个粗波分复用器(CWDM)分离,该复用器的作用是将SPDC光谱分成宽带宽的两半。对于在Alice和Bob使用超过16个密集波分复用器(DWDM)通道的系统,CWDM将替换成一个分束器,该分束器有效地将1540nm以下的完整SPDC光谱发送给Bob,将1540nm以上的光谱发送给Alice。PPLN产生的纠缠闲置和信号光子分别被发送到标记为Alice和Bob的接收站。每个接收站的一个读出干涉仪将所有光谱带投影到一个复合的时间-相位基础上。在这里,DWDM将能量-时间纠缠的光子对分成光谱通道。使用100GHz间隔的密集波分复用器(DWDM)模块将每个频率通道引导到不同的光纤中。实验中采用两个超导纳米线单光子探测器(SNSPDs)进行光子到达时间的测量,并分辨通过多路复用技术产生的多个高可见度通道对。

38200af4-6688-11ef-89ff-92fbcf53809c.png

在实验中使用的ITU信道。用相同颜色突出显示的信道对遵守SPDC的相位和泵浦能量匹配条件。为了评估Alice的DWDM复用器的全部16个信道(27-42),Bob的8通道DWDM被替换为具有可调谐谐振频率的窄带滤波器(图中未显示)。

PPLN的作用

高速率纠缠分布实现了基于高速率纠缠的QKD,以及具有前沿量子网络特征的更一般的操作,而这些在许多指标上都有令人印象深刻的表现。目前许多研究都强调需要利用高总量度、光谱亮度、收集效率和产生纠缠光子对的高可见性,而通过非线性晶体可以满足实际高速率纠缠分布的需求。

3839f00e-6688-11ef-89ff-92fbcf53809c.png

在量子通信和光子学领域内,非线性光学晶体起到了至关重要的作用。在这项研究中,量子通信依赖于量子纠缠态的生成和分发,而使用Covesion的PPLN晶体(周期极化铌酸锂晶体),通过非线性光学效应——自发参量下转换(SPDC)产生纠缠光子对,而这些光子对是实现QKD和量子网络的基础。Covesion的PPLN晶体凭借其高非线性系数和精确地极化周期,实现了高效率的光子对产生,这将提高量子通信系统的整体速率。本文中采用WGP-1550-10光纤耦合加固型封装波导应用于SPDC,在具有出色转化效率的同时兼具易用与可靠,并可配套提供温度控制器,保证晶体在稳定的温度下工作,满足相位匹配条件以获得稳定的纠缠光子对产生。如果您对于封装波导有更多其他的需求,Covesion也提供定制服务,包括周期以及晶体长度等等参数

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 高速率
    +关注

    关注

    0

    文章

    6

    浏览量

    6391
  • PPLN
    +关注

    关注

    0

    文章

    7

    浏览量

    6261
  • 量子计算
    +关注

    关注

    4

    文章

    1051

    浏览量

    34716
  • 量子比特
    +关注

    关注

    0

    文章

    36

    浏览量

    8780
收藏 人收藏

    评论

    相关推荐

    【《计算》阅读体验】量子计算

    鉴于本书叙述内容着实很丰富,带有科普性质。这里选择感兴趣也是当前科技前沿的量子计算进行阅读学习分享。 量子计算机操作的是量子比特,可以基于量子
    发表于 07-13 22:15

    中国科大成功构建高纠缠效率城域三节点量子网络

    现有的单光子传输量子密钥网络已经相对成熟。为了拓展到分布式量子计算和量子传感器等领域,我们需要借助量子中继技术在长达数十公里内的远距量子存储
    的头像 发表于 05-16 11:26 586次阅读

    量子芯片的概念分析

    量子芯片的核心技术是量子比特,它可以同时处于0和1的叠加态,而传统二进制比特只能处于0或1的其中一种状态。这种叠加态使得量子计算机能够在同一
    的头像 发表于 04-26 14:15 1195次阅读

    量子纠缠探测与大小估算研究新突破

    量子纠缠作为量子理论的基石,也是量子信息领域的宝贵资源。在实验过程中,有效的纠缠探测和衡量对实现众多关键信息任务,譬如如何高效地利用
    的头像 发表于 04-02 09:34 273次阅读

    量子

    当我们谈论量子计算机时,通常是在讨论一种利用量子力学原理进行计算的全新计算机系统。与传统的计算机使用二进制位(0和1)来表示数据不同,量子计算机使用量子
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    逻辑门,但是它们可以操作叠加态和纠缠态。 量子计算机的计算能力主要来自于量子比特的叠加特性,通过操纵量子
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

    计算方法的区别传统方法是,按照不走枚举所有情况,而量子计算是一次处理所有情况,是一步到位。但是这里又有疑惑了,量子计算如何实现的一步到位呢, 这里引入了量子比特和传统计算机
    发表于 03-11 12:50

    量子计算机重构未来 | 阅读体验】第二章关键知识点

    量子计算机的工作原理--量子叠加的概念。即手指朝上代表逻辑1,手指朝下代表逻辑0,但是呢,如果手指超中间怎么表示呢?这就是量子比特中的量子
    发表于 03-06 23:17

    量子计算机的作用有哪些

    认为是未来计算机技术的重要发展方向。 一、量子计算机的基本概念 量子计算机的核心是量子比特,与经典计算机中的比特不同,
    的头像 发表于 12-30 14:32 1476次阅读

    什么是逻辑量子比特?怎样用其实现量子纠错呢?

    逻辑量子比特(Logical Qubit)由多个物理量子比特组成,可作为量子计算系统的基本计算单元,因其具有较强的纠错性能而备受关注。
    的头像 发表于 12-21 18:24 735次阅读
    什么是逻辑<b class='flag-5'>量子</b><b class='flag-5'>比特</b>?怎样用其实现<b class='flag-5'>量子</b>纠错呢?

    首次实现按需分子之间的纠缠

    量子信息处理需要量子纠缠的受控产生和操纵。尽管各种原子、光子和超导平台上已经实现了纠缠,但控制分子纠缠的产生是一个长期存在的挑战。
    的头像 发表于 12-20 11:26 285次阅读
    首次实现按需分子之间的<b class='flag-5'>纠缠</b>

    浅谈量子纠缠相关的量子应用

    为了证明分子的纠缠,作者测量了贝尔态创建保真度F。根据布居和宇称振荡测量,获得了FRAW=0.540的原始贝尔态保真度,原始保真度和测量校正保真度均高于1/2,表明纠缠确实存在并按需创建。
    的头像 发表于 12-15 10:24 613次阅读

    光子的量子纠缠实现快速可视化

      加拿大渥太华大学与意大利罗马第一大学的科学家展示了一种新技术,可实时可视化两个纠缠光子(构成光的基本粒子)的波函数。这一成果有望加速量子技术的进步,改进量子态表征、量子通信并开发新
    的头像 发表于 12-01 10:34 278次阅读

    我国量子通信技术现状 量子通信相比经典通信的优点

    量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。而按照传输的比特类型、应用原理等,
    发表于 11-07 10:19 1170次阅读
    我国<b class='flag-5'>量子</b>通信技术现状 <b class='flag-5'>量子</b>通信相比经典通信的优点

    纠缠原子可以获得更准确、更快的量子传感器

    被称为纠缠的奇怪量子现象可以将原子和其他粒子连接在一起,从而使它们可以瞬间相互影响,而不受距离的限制。新的研究表明,利用纠缠可以获得更准确、更快的量子传感器,从而支持GPS等卫星导航技
    的头像 发表于 10-21 09:45 872次阅读