0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

史上最全的电容应用与选型讲解

wFVr_Hardware_1 来源:互联网 作者:佚名 2017-09-25 16:05 次阅读

作者:王一一,知乎《硬件之路》

一、电容的基本原理

电容,和电感、电阻一起,是电子学三大基本无源器件;电容的功能就是以电场能的形式储存电能量。

以平行板电容器为例,简单介绍下电容的基本原理

Q

电容储存的电荷量Q与电压U和自身属性(也就是电容值C)有关,也就是Q=U*C。根据理论推导,平行板电容器的电容公式如下:

通交流

电压可以在电容内部形成一个电场,而交流电压就会产生交变电场。根据麦克斯韦方程组中的全电流定律:

即电流或变化的电场都可以产生磁场,麦克斯韦将ε(∂E/∂t)定义为位移电流,是一个等效电流,代表着电场的变化。(这里电流代表电流密度,即J)

设交流电压为正弦变化,即:

实际位移电流等于电流密度乘以面积:

1/ωC,频率很高时,电容容抗会很小,也就是通高频。

下图是利用ANSYS HFSS仿真的平行板电容器内部的电磁场的变化。

横截面电场变化(GIF动图,貌似要点击查看)

纵断面磁场变化(GIF动图,貌似要点击查看)

隔直流

直流电压不随时间变化,位移电流ε(∂E/∂t)为0,直流分量无法通过。

实际电容等效模型

实际电容的特性都是非理想的,有一些寄生效应;因此,需要用一个较为复杂的模型来表示实际电容,常用的等效模型如下:

  • 由于介质都不是绝对绝缘的,都存在着一定的导电能力;因此,任何电容都存在着漏电流,以等效电阻Rleak表示;

  • 电容器的导线、电极具有一定的电阻率,电介质存在一定的介电损耗;这些损耗统一以等效串联电阻ESR表示;

  • 电容器的导线存在着一定的电感,在高频时影响较大,以等效串联电感ESL表示;

  • 另外,任何介质都存在着一定电滞现象,就是电容在快速放电后,突然断开电压,电容会恢复部分电荷量,以一个串联RC电路表示。

大多数时候,主要关注电容的ESR和ESL。

品质因数(Quality Factor)

和电感一样,可以定义电容的品质因数,也就是Q值,也就是电容的储存功率与损耗功率的比:

Qc=(1/ωC)/ESR

Q值对高频电容是比较重要的参数

自谐振频率(Self-Resonance Frequency)

由于ESL的存在,与C一起构成了一个谐振电路,其谐振频率便是电容的自谐振频率。在自谐振频率前,电容的阻抗随着频率增加而变小;在自谐振频率后,电容的阻抗随着频率增加而变小,就呈现感性;如下图所示:

图出自Taiyo Yuden的EMK042BJ332MC-W规格

二、电容的工艺与结构

根据电容公式,电容量的大小除了与电容的尺寸有关,与电介质的介电常数(Permittivity)有关。电介质的性能影响着电容的性能,不同的介质适用于不同的制造工艺。

常用介质的性能对比,可以参考AVX的一篇技术文档。

AVX Dielectric Comparison Chart

电容的制造工艺主要可以分为三大类:

2.1 薄膜电容(Film Capacitor)

Film Capacitor在国内通常翻译为薄膜电容,但和Thin Film工艺是不一样的。为了区分,个人认为直接翻译为膜电容好点。

薄膜电容是通过将两片带有金属电极的塑料膜卷绕成一个圆柱形,最后封装成型;由于其介质通常是塑料材料,也称为塑料薄膜电容;其内部结构大致如下图所示:

原图来自于维基百科

薄膜电容根据其电极的制作工艺,可以分为两类:

金属箔薄膜电容(Film/Foil)

金属箔薄膜电容,直接在塑料膜上加一层薄金属箔,通常是铝箔,作为电极;这种工艺较为简单,电极方便引出,可以应用于大电流场合。

金属化薄膜电容(Metallized Film)

金属化薄膜电容,通过真空沉积(Vacuum Deposited)工艺直接在塑料膜的表面形成一个很薄的金属表面,作为电极;由于电极厚度很薄,可以绕制成更大容量的电容;但由于电极厚度薄,只适用于小电流场合。

金属化薄膜电容就是具有自我修复的功能,即假如电容内部有击穿损坏点,会在损坏处产生雪崩效应,气化金属在损坏处将形成一个气化集合面,短路消失,损坏点被修复;因此,金属化薄膜电容可靠性非常高,不存在短路失效;

薄膜电容有两种卷绕方法:有感绕法在卷绕前,引线就已经和内部电极连在一起;无感绕法在绕制后,会采用镀金等工艺,将两个端面的内部电极连成一个面,这样可以获得较小的ESL,应该高频性能较高;此外,还有一种叠层型的无感电容,结构与MLCC类似,性能较好,便于做成SMD封装。

原图出自global.tdk.com/techmag/

最早的薄膜电容的介质材料是用纸浸注在油或石蜡中,英国人D'斐茨杰拉德于1876年发明的;工作电压很高。现在多用塑料材料,也就是高分子聚合物,根据其介质材料的不同,主要有以下几种:

应用最多的薄膜电容是聚酯薄膜电容,比较便宜,由于其介电常数较高,尺寸可以做的较小;其次就是聚丙烯薄膜电容。其他材料还有聚四氟乙烯、聚苯乙烯、聚碳酸酯等等。

薄膜电容的特点就是可以做到大容量,高耐压;但由于工艺原因,其尺寸很难做小,通常应用于强电电路,例如电力电子行业;基本上是长这个样子:

截图于High Power Capacitors For Power Electronics - AVX

引申阅读:

  • Film capacitor

  • Capacitors, Part 4 "Film Capacitors [1]"

  • AVX PRODUCT GUIDE FOR MEDIUM & HIGH POWER FILM CAPACITORS

2.2 电解电容(Electrolytic Capacitor)

电解电容是用金属作为阳极(Anode),并在表面形成一层金属氧化膜作为介质;然后湿式或固态的电解质和金属作为阴极(Cathode)。电解电容大都是有极性的,如果阴极侧的金属,也有一层氧化膜,就是无极性的电解电容。

根据使用的金属的不同,目前只要有三类电解电容:

铝电解电容(Aluminum electrolytic capacitors)

铝电解电容应该是使用最广泛的电解电容,最便宜,其基本结构如下图所示:

原图出自global.tdk.com/techmag/

铝电解电容的制作工艺大致有如下几步:

  • 首先,铝箔会通过电蚀刻(Etching)的方式,形成一个非常粗糙的表面,这样增大了电极的表面积,可以增大电容量;

  • 再通过化学方法将阳极氧化,形成一个氧化层,作为介质;

  • 然后,在阳极铝箔和阴极铝箔之间加一层电解纸作为隔离,压合绕制;

  • 最后,加注电解液,电解纸会吸收电解液,封装成型。

使用电解液的湿式铝电解电容应用最广;优点就是电容量大、额定电压高、便宜;缺点也很明显,就是寿命较短、温度特性不好、ESR和ESL较大。对于硬件开发来说,需要避免过设计,在满足性能要求的情况下,便宜就是最大的优势。

下图是基美(Kemet)的铝电解电容产品,大致可以看出铝电解电容的特点。

原图截图于KEMET网站

铝电解电容也有使用二氧化锰、导电高分子聚合物等固态材料做电解质;聚合物铝电解电容的结构大致如下图所示:

原图出自Polymer Aluminum Electrolytic Capacitors - Murata

聚合物铝电解电容的ESR较小,容值更稳定,瞬态响应好;由于是固态,抗冲击振动能力比湿式的要好;可以做出较小的SMD封装。当然,湿式的铝电解电容也可以做SMD封装,不过大都是长这样:

图片来源于百度图片

而聚合物铝电解电容的封装长这样:

图片来自Murata网站

引申阅读:

  • Polymer Capacitor Basics (Part 1): What Is a Polymer Capacitor?

  • Polymer Capacitor Basics (Part 2): What Is a Polymer Capacitor?

钽电解电容(Tantalum electrolytic capacitors)

钽(拼音tǎn)电解电容应用最多的应该是利用二氧化锰做固态电解质,主要长这样:

图片出自Solid Tantalum MnO2 Capacitors

固态钽电解电容内部结构大致如下图所示:

原图出自Vishay技术文档

钽电容与铝电解电容比,在于钽氧化物(五氧化二钽)的介电常数比铝氧化物(三氧化二铝)的高不少,这样相同的体积,钽电容容量要比铝电解电容的要大。钽电容寿命较长,电性能更加稳定。

钽电容也有利用导电高分子聚合物(Conductive Polymer)做电解质,结构与上图二氧化锰钽电容类似,就是将二氧化锰换成导电聚合物;导电聚合物的电导率比二氧化锰高,这样ESR就会更低。

另外还有湿式的钽电容,特点就是超大容量、高耐压、低直流漏电流,主要用于军事和航天领域。湿式的钽电容主要长这样:

截图于Vishay技术文档

引申阅读:

  • Guide for Tantalum Solid Electrolyte Chip Capacitors with Polymer Cathode

  • Wet Electrolyte Tantalum Capacitors

铌电解电容(Niobium electrolytic capacitors)

铌电解电容与钽电解电容类似,就是铌及其氧化物代替钽;铌氧化物(五氧化二铌)的介电常数比钽氧化物(五氧化二钽)更高;铌电容的性能更加稳定,可靠性更高。

AVX有铌电容系列产品,二氧化锰钽电容外观是黄色,而铌电容外观是橙红色,大致长这样:

图片出自AVX网站

引申阅读:

  • Tantalum Polymer and Niobium OxideCapacitors

  • OxiCap® - niobium oxide capacitor

电解电容对比表,数据来源于维基百科,仅供参考。

引申阅读:

  • Electrolytic capacitor

2.3 陶瓷电容(Ceramic Capacitor)

陶瓷电容是以陶瓷材料作为介质材料,陶瓷材料有很多种,介电常数、稳定性都有不同,适用于不同的场合。

陶瓷电容,主要有以下几种:

瓷片电容(Ceramic Disc Capacitor)

瓷片电容的主要优点就是可以耐高压,通常用作安规电容,可以耐250V交流电压。其外观和结构如下图所示:

原图出自本小节两篇引申阅读

引申阅读:

  • Capacitors | DE1 series lineup

  • Ceramic Capacitor

多层陶瓷电容(Multi-layer Ceramic Capacitor)

多层陶瓷电容,也就是MLCC,片状(Chip)的多层陶瓷电容是目前世界上使用量最大的电容类型,其标准化封装,尺寸小,适用于自动化高密度贴片生产。

作者,也就是我自己设计的主板,自己拍的照片,加了艺术效果;没有标引用和出处的图片和内容,绝大多数都是我自己画或弄出来的,剩下一点点可能疏忽忘加了;标引用的图片,很多都是我重新加工的,例如翻译或几张图拼在一起等等,工具很土EXCEL+截图。

多层陶瓷电容的内部结构如下图所示:

原图出自SMD MLCC for High Power Applications - KEMET

多层陶瓷电容生产流程如下图所示:

原图出自Capacitors, Part 2 "Ceramic Capacitors [1]"

由于多层陶瓷需要烧结瓷化,形成一体化结构,所以引线(Lead)封装的多层陶瓷电容,也叫独石(Monolithic)电容。

在谈谈电感中也介绍过多层陶瓷工艺和Thin Film工艺。Thin Film技术在性能或工艺控制方面都比较先进,可以精确的控制器件的电性能和物理性能。因此,Thin Film电容性能比较好,最小容值可以做到0.05pF,而容差可以做到0.01pF;比通常MLCC要好很多,像Murata的GJM系列,最小容值是0.1pF,容差通常都是0.05pF;因此,Thin Film电容可以用于要求比较高的RF领域,AVX有Accu-P®系列。

引申阅读

  • Thin Film Capacitor - AVX

  • Ceramic capacitor

  • BME and PME Ceramic’s Hidden Property - KEMET

陶瓷介质的分类

根据EIA-198-1F-2002,陶瓷介质主要分为四类:

  • Class I:具有温度补偿特性的陶瓷介质,其介电常数大都较低,不超过200。通常都是顺电性介质(Paraelectric),温度、频率以及偏置电压下,介电常数比较稳定,变化较小。损耗也很低,耗散因数小于0.01。

截图自Materials Development for Commercial Multilayer Ceramic Capacitors,Page26

性质最稳定,应用最多的是C0G电容,也就是NP0。NP0是IEC/EN 60384-1标准中规定的代号,即Negative Positive Zero,也就是用N和P来表示正负偏差。

由于介电常数低,C0G电容的容值较小,最大可以做到0.1uF,0402封装通常最大只有1000pF。

  • Class II,III:其中,温度特性A-S属于Class II,介电常数几千左右。温度特性T-V属于Class III,介电常数最高可以到20000,可以看出Class III的性能更加不稳定。根据IEC的分类,Class II和III都属于第二类,高介电常数介质。像X5R和X7R都是Class II电容,在电源去耦中应用较多,而Y5V属于Class III电容,性能不太稳定,个人觉得现在应用不多了。

截图自Materials Development for Commercial Multilayer Ceramic Capacitors,Page103

由于Class II和III电容的容值最高可以做到几百uF,但由于高介电常数介质,大都是铁电性介质(Ferroelectric),温度稳定性差。此外,铁电性介质,在直流偏置电压下介电常数会下降。

在谈谈电感一文中,介绍了铁磁性介质存在磁滞现象,当内部磁场超过一定值时,会发生磁饱和现象,导致磁导率下降;同样的,对于铁电性介质存在电滞现象,当内部电场超过一定值时,会发生电饱和现象,导致介电常数下降。

因此,当Class II和III电容的直流偏置电压超过一定值时,电容会明显下降,如下图所示:

图片来源GRM188R60J226MEA0 - Murata
  • Class IV制作工艺和通常的陶瓷材料不一样,内部陶瓷颗粒都是外面一层很薄的氧化层,而核心是导体。这种类型的电容容量很大,但击穿电压很小。由于此类电容的性能不稳定,损耗高,现在已经基本被淘汰了。

引申阅读:

  • ECA-EIA-198-1-F-2002

  • Materials Development for Commercial Multilayer Ceramic Capacitors

  • Hysteresis in Piezoelectric and Ferroelectric Materials

电容类型总结表

原图出自维基百科

还有一类超级电容,就是容量特别大,可以替代电池作为供电设备,也可以和电池配合使用。超级电容充电速度快,可以完全地充放电,而且可以充到任何想要的电压,只要不超过额定电压。现在应用也比较多,国内很多城市都有超级电容电动公交车;还有些电子产品上也有应用,例如一些行车记录仪上,可以持续供电几天。

引申阅读:

  • What Is a Supercapacitor (EDLC)?

  • Murata Supercapacitor Technical Note

  • Capacitor types

  • Comparison of Multilayer Ceramic and Tantalum Capacitors

三、电容的应用与选型

器件选型,其实就是从器件的规格书上提取相关的信息,判断是否满足产品的设计和应用的要求。

3.1 概述

电容作为一个储能元件,可以储存能量。外部电源断开后,电容也可能带电。因此,安全提示十分必要。有些电子设备内部会贴个高压危险,小时候拆过家里的黑白电视机,拆开后看到显像管上贴了个高压危险,那时就有个疑问,没插电源也会有高压吗?工作后,拆过几个电源适配器,被电的回味无穷……

  • 储存能量就可以当电源,例如超级电容;

  • 存储数据,应用非常广。动态易失性存储器(DRAM)就是利用集成的电容阵列存储数据,电容充满电就是1,放完电就是0。各种手机电脑、服务器中内存的使用量非常大,因此,内存行业都可以作为信息产业的风向标了。

此外,电容还可以用作:

  • 定时:电容充放电需要时间,可以用做定时器;还可以做延时电路,最常见的就是上电延时复位;一些定时芯片如NE556,可以产生三角波。

  • 谐振源:与电感一起组成LC谐振电路,产生固定频率的信号

利用电容通高频、阻低频、隔直流的特性,电容还可以用作:

电源去耦

电源去耦应该是电容最广泛的应用,各种CPU、SOC、ASIC的周围、背面放置了大量的电容,目的就是保持供电电压的稳定。

首先,在DCDC电路中,需要选择合适的输入电容和输出电容来降低电压纹波。需要计算出相关参数。

此外,像IC工作时,不同时刻需要的工作电流是不一样的,因此,也需要大量的去耦电容,来保证工作电压得稳定。

耦合隔直

设计电路时,有些情况下,只希望传递交流信号,不希望传递直流信号,这时候可以使用串联电容来耦合信号。

例如多级放大器,为了防止直流偏置相互影响,静态工作点计算复杂,通常级间使用电容耦合,这样每一级静态工作点可以独立分析。

例如PCIE、SATA这样的高速串行信号,通常也使用电容进行交流耦合。

旁路滤波

旁路,顾名思义就是将不需要的交流信号导入大地。滤波其实也是一个意思。在微波射频电路中,各种滤波器的设计都需要使用电容。此外,像EMC设计,对于接口处的LED灯,都会在信号线上加一颗滤波电容,这样可以提高ESD测试时的可靠性。

3.2 铝电解电容

3.2.1 铝电解电容(湿式)

铝电解电容(湿式)无论是插件还是贴片封装,高度都比较高,而且ESR都较高,不适合于放置于IC附近做电源去耦,通常都是用于电源电路的输入和输出电容。

原图来自KEMET规格书

容值

从规格书中获取电容值容差,通常铝电解电容的容差都是±20%。计算最大容值和最小容值时,各项参数要满足设计要求。

额定电压

铝电解电容通常只适用于直流场合,设计工作电压至少要低于额定电压的80%。对于有浪涌防护的电路,其额定浪涌电压要高于防护器件(通常是TVS)的残压。

例如,对于一些POE供电的设备,根据802.3at标准,工作电压最高可达57V,那么选择的TVS钳位电压有90多V,那么至少选择额定电压100V的铝电解电容。此时,也只有铝电解电容能同时满足大容量的要求。

原图来自Littelfuse的TVS规格书

耗散因数

设计DCDC电路时,输出电容的ESR影响输出电压纹波,因此需要知道铝电解电容的ESR,但大多数铝电解电容的规格书只给出了耗散因数tanδ。可以根据以下公式来计算ESR:

ESR = tanδ/(2πfC)

例如,120Hz时,tanδ为16%,而C为220uF,则ESR约为965mΩ。可见铝电解电容的ESR非常大,这会导致输出电压纹波很大。因此,使用铝电解电容时,需要配合使用片状陶瓷电容,靠近DCDC芯片放置。

随着开关频率和温度的升高,ESR会下降。

额定纹波电流

电容的纹波电流,要满足DCDC设计的输入和输出电容的RMS电流的需求。铝电解电容的额定纹波电流需要根据开关频率来修正。

寿命

铝电解电容的寿命比较短,选型需要注意。而寿命是和工作温度直接相关的,规格书通常给出产品最高温度时的寿命,例如105℃时,寿命为2000小时。

根据经验规律,工作温度每下降10℃,寿命乘以2。如果产品的设计使用寿命为3年,也就是26280小时。则10*log2(26280/2000)=37.3℃,那么设计工作温度不能超过65℃。

3.2.2 聚合物铝电解电容

Intel的CPU这样的大功耗器件,一颗芯片80多瓦的功耗,核电流几十到上百安,同时主频很高,高频成分多。这时对去耦电容的要求就很高:

  • 电容值要大,满足大电流要求;

  • 额定RMS电流要大,满足大电流要求;

  • ESR要小,满足高频去耦要求;

  • 容值稳定性要好;

  • 表面帖装,高度不能太高,因为通常放置在CPU背面的BOTTOM层,以达到最好的去耦效果。

这时,选择聚合物铝电解电容最为合适。

此外,对于音频电路,通常需要用到耦合、去耦电容,由于音频的频率很低,所以需要用大电容,此时聚合物铝电解电容也很合适。

3.3 钽电容

根据前文相关资料的来源,可以发现,钽电容的主要厂商就是Kemet、AVX、Vishay。

钽属于比较稀有的金属,因此,钽电容会比其他类型的电容要贵一点。但是性能要比铝电解电容要好,ESR更小,损耗更小,去耦效果更好,漏电流小。下图是Kemet一款固态钽电容的参数表:

截图自Kemet规格书

额定电压

固态钽电容的工作电压需要降额设计。正常情况工作电压要低于额定电压的50%;高温环境或负载阻抗较低时,工作电压要低于额定电压的30%。具体降额要求应严格按照规格书要求。

此外,还需要注意钽电容的承受反向电压的情况,交流成分过大,可能会导致钽电容承受反向电压,导致钽电容失效。

固态钽电容的主要失效模式是短路失效,会直接导致电路无法工作,甚至起火等风险。因此,需要额外注意可靠性设计,降低失效率。

对于一旦失效,就会造成重大事故的产品,建议不要使用固态钽电容。

额定纹波电流

纹波电流流过钽电容,由于ESR存在会导致钽电容温升,加上环境温度,不要超过钽电容的额定温度以及相关降额设计。

3.4 片状多层陶瓷电容

片状多层陶瓷电容应该是出货量最大的电容,制造商也比较多,像三大日系TDK、muRata、Taiyo Yuden,美系像KEMET、AVX(已经被日本京瓷收购了)。

三大日系做的比较好的就是有相应的选型软件,有电感、电容等所有系列的产品及相关参数曲线,非常全,不得不再次推荐一下:

  • SEAT 2013 - TDK

  • Simsurfing - Murata

  • Taiyo Yuden Components Selection Guide & Data Library

3.4.1 Class I电容

Class I电容应用最多的是C0G电容,性能稳定,适用于谐振、匹配、滤波等高频电路。

C0G电容的容值十分稳定,基本不随外界条件(频率除外)变化,下图是Murata一款1000pF电容的直流、交流及温度特性。

图片来自GRM1555C1H102JA01 - Murata

因此,通常只需要关注C0G电容的频率特性。下图是Murata的3款相同封装(0402inch)相同容差(5%)的10pF电容的频率特性对比。

图片来自SimSurfing - Web - Murata

其中GRM是普通系列,GJM是高Q值系列、GQM是高频系列,可见GQM系列高频性能更好,自谐振频率和Q值更高,一些高频性能要求很高的场合,可以选用容差1%的产品。而GRM系列比较便宜,更加通用,例如EMC滤波。

3.4.2 Class II和Class III电容

Class II和Class III电容都是高介电常数介质,性能不稳定,容值变化范围大,通常用作电源去耦或者信号旁路。

以Murata一款22uF、6.3V、X5R电容为例,相关特性曲线:

图片来自GRM188R60J226MEA0 - Murata

容值

Class II和Class III电容,容值随温度、DC偏置以及AC偏置变化范围较大。特别是用作电源去耦时,电容都有一定的直流偏置,电容量比标称值小很多,所以要注意实际容值是否满足设计要求。

纹波电流

作为DCDC的输入和输出电容,都会有一定的纹波电流,由于ESR的存在会导致一定的温升。加上环境温度,不能超过电容的额定温度,例如X5R电容最高额度温度是85℃。

通常由于多层陶瓷电容ESR较小,能承受的纹波电流较大。

自谐振频率

电容由于ESL的存在,都有一个自谐振频率。大容量的电容,自谐振频率较低,只有1-2MHz。所以,为了提高电源的高频效应,大量小容值的去耦电容是必须的。此外,对于开关频率很高的DCDC芯片,要注意输入输出电容的自谐振频率。

ESR

设计DCDC电路,需要知道输出电容的ESR,来计算输出电压纹波。多层陶瓷电容的ESR通常较低,大约几到几十毫欧。

3.5 安规电容

对于我们家用的电子设备,最终都是220V交流市电供电。电源适配器为了减少对电网的干扰,通过相关EMC测试,都会加各种滤波电容。下图为一个简易的电路示意图:

以抗电强度测试为例,根据标准,L、N侧为一次电路,需要与PE或GND之间为基本绝缘。因此,需要在L或N对GND之间加交流1.5kV或者直流2.12kV的耐压测试,持续近1分钟,期间相关漏电流不能超过标准规定值。因此,安规电容,有相当高的耐压要求,同时直流漏电流不能太大。

此外,常用的RJ45网口,为了减小EMI,常用到Bob-Smith电路,如下图所示:

因为,安规电容有高耐压要求,通常使用瓷片电容或者小型薄膜电容。

此外,器件选型还要主要两点要求:和结构确认器件的长宽高;对插件封装器件不多时,是不是可以全部使用表贴器件,这样可以省掉波峰焊的工序。

结语

本文大致介绍了几类主要的电容的工艺结构,以及应用选型。水平有限,难免疏漏,欢迎指出。同时仅熟悉信息技术设备,对电力电子、军工等其他行业不了解,所以还有一些其他的电容相关应用无法介绍。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电容器
    +关注

    关注

    63

    文章

    6199

    浏览量

    99275
  • 高频电容
    +关注

    关注

    1

    文章

    40

    浏览量

    41871
  • 金属化薄膜电容

    关注

    0

    文章

    4

    浏览量

    5017

原文标题:谈谈电容

文章出处:【微信号:Hardware_10W,微信公众号:硬件十万个为什么】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    TAS5720L磁珠怎么选型

    TAS5720L电路图中,推荐 Z1/Z2 选型为NFZ2MSM181SN10L,现在我想重新选择一款比较通用的,更容易采购的磁珠,麻烦能不能推荐下新的磁珠选型和与其匹配的电容大小。 另外,请教下这个磁珠的
    发表于 10-28 06:08

    史上最全百吋阵营!海信电视新品被曝画质“炸裂”,或掀市场新风暴?

    根据知名数码博主“吴小杰WJie”爆料:月底海信电视将发布史上最全百吋阵营,基本涵盖了所有的价格区段,而且还有一款能够干翻旗舰电视的新品,配置和画质都非常炸裂,以及这次还有好几个首次发布的新功能,我
    的头像 发表于 09-26 18:39 1.5w次阅读
    <b class='flag-5'>史上</b><b class='flag-5'>最全</b>百吋阵营!海信电视新品被曝画质“炸裂”,或掀市场新风暴?

    低压电容器在冶金行业中的选型案例

    在现代冶金行业中,能源消耗的优化和设备性能的提升是企业关注的焦点,而低压电容器作为提高电能使用效率的重要组件,逐渐引起了业内人士的重视。将深入探讨低压电容器在冶金行业中的选型案例,帮助读者更好地理
    的头像 发表于 09-25 14:20 141次阅读

    igbt尖峰吸收电容选型方法

    IGBT尖峰吸收电容选型方法是一个综合考虑多个因素的过程,以确保电容能够有效地吸收IGBT在开关过程中产生的尖峰电压和电流,从而保护IGBT不受损坏。以下是一些关键的选型方法: 一、
    的头像 发表于 08-08 10:25 1633次阅读

    电容的设计和选型方法

    为了确定DC-Link电容器的最小容量,我们需要以下关键输入数据: 电机特性曲线:这包括了根据速度、扭矩、水温和电池电压变化的损耗、相到中性点的电压、功率因数角和相电流的有效值。 PWM控制策略:如
    的头像 发表于 07-31 15:51 430次阅读

    复合开关投切电容选型标准

    复合开关在投切电容器时的选型标准主要考虑以下几个方面:
    的头像 发表于 04-26 14:54 470次阅读
    复合开关投切<b class='flag-5'>电容</b>器<b class='flag-5'>选型</b>标准

    TDK电容器产品指南

    MLCC电容器使用说明,选型条件
    发表于 04-09 09:06 9次下载

    超级电容选型和应用

    超级电容选型和应用超级电容器是一种通过极化电解质来储能的一种电化学元件,可作为一种介于传统电容器与电池之间、具有特殊性能的电源,且储能过程是可逆的,可以反复充放电数十万次。其突出优点
    的头像 发表于 03-22 09:51 541次阅读
    超级<b class='flag-5'>电容</b>的<b class='flag-5'>选型</b>和应用

    薄膜电容器类型及应用选型

    又被分为: 箔式电容器和金属化薄膜电容器 二:薄膜电容器性能对比 三:薄膜电容应用选型 四:薄膜电容
    的头像 发表于 03-15 15:11 1588次阅读
    薄膜<b class='flag-5'>电容</b>器类型及应用<b class='flag-5'>选型</b>

    电容中的纹波电流

    纹波电流的基础认识以及特点 对电容选型有参考意义
    的头像 发表于 03-06 11:21 2380次阅读

    TLE9879电阻和电容选型,配置参数怎么确定?

    电阻和电容选型,配置参数怎么确定,谢谢!
    发表于 01-25 07:46

    TVS选型四个关键指标及选型

    关键词:TVS选型、工作电压、瞬态电流、箝位电压、电容值 # 1. 工作电压(Vrwm) 要选择合适的TVS,工作电压是首要考虑的指标。根据电路的最高电压,选择工作电压稍高于最高电压,确保TVS能
    的头像 发表于 01-24 15:39 797次阅读
    TVS<b class='flag-5'>选型</b>四个关键指标及<b class='flag-5'>选型</b>

    LTC7130 ITH pin连接的电阻和电容选型怎么计算?

    LTC7130 ITH pin连接的电阻和电容选型怎么计算?
    发表于 01-05 07:00

    芯片选型应考虑哪些因素?

    芯片选型
    芯广场
    发布于 :2023年11月30日 18:16:25

    电容的尺寸、耐压值、方向讲解

    电容的尺寸:对于陶瓷电容和钽电容,其尺寸和电阻一样,小尺寸的用英制,0201、0402、0603、0805,大尺寸的用公制,如2520、3525等。对于柱状的电解电容,一般是用“直径x
    的头像 发表于 11-29 12:25 3734次阅读
    <b class='flag-5'>电容</b>的尺寸、耐压值、方向<b class='flag-5'>讲解</b>