0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳化硅 (SiC) 与氮化镓 (GaN)应用 | 氮化硼高导热绝缘片

向欣电子 2024-09-16 08:02 次阅读

f04ee17a-73be-11ef-bb4b-92fbcf53809c.png

SiC 和 GaN 被称为“宽带隙半导体”(WBG)。由于使用的生产工艺,WBG 设备显示出以下优点:

1.宽带隙半导体

氮化镓(GaN)和碳化硅(SiC)在带隙和击穿场方面相对相似。氮化镓的带隙为3.2 eV,而碳化硅的带隙为3.4 eV。虽然这些值看起来相似,但它们明显高于硅的带隙。硅的带隙仅为1.1 eV,比氮化镓和碳化硅小三倍。这些化合物的较高带隙允许氮化镓和碳化硅舒适地支持更高电压的电路,但它们不能像硅那样支持低压电路。

2.击穿场强度

氮化镓和碳化硅的击穿场相对相似,氮化镓的击穿场为3.3 MV/cm,而碳化硅的击穿场为3.5 MV/cm。与普通硅相比,这些击穿场使化合物明显更好地处理更高的电压。硅的击穿场为0.3 MV/cm,这意味着氮化镓和碳化硅保持更高电压的能力几乎高出十倍。它们还能够使用明显更小的器件支持较低的电压。

3.高电子迁移率晶体管(HEMT)

氮化镓和碳化硅之间最显着的区别在于它们的电子迁移率,这表明电子在半导体材料中的移动速度。首先,硅的电子迁移率为1500 cm^2/Vs.氮化镓的电子迁移率为2000 cm^2/Vs,这意味着电子的移动速度比硅的电子快30%以上。然而,碳化硅的电子迁移率为650 cm^2/Vs,这意味着碳化硅的电子比GaN和硅的电子移动得慢。凭借如此高的电子迁移率,GaN几乎是高频应用的三倍。电子可以通过氮化镓半导体比SiC快得多。

4.氮化镓和碳化硅导热系数

材料的导热性是其通过自身传递热量的能力。考虑到材料的使用环境,导热系数直接影响材料的温度。在大功率应用中,材料的低效率会产生热量,从而提高材料的温度,并随后改变其电气特性。氮化镓的导热系数为1.3 W/cmK,实际上比硅的导热系数差,硅的导率为1.5 W/cmK。然而,碳化硅的导热系数为5 W/cmK,使其在传递热负荷方面提高了近三倍。这一特性使碳化硅在高功率、高温应用中具有很高的优势。

5.半导体晶圆制造工艺

目前的制造工艺是氮化镓和碳化硅的限制因素,因为这些工艺比广泛采用的硅制造工艺更昂贵、精度更低或能源密集。例如,氮化镓在小面积上含有大量的晶体缺陷。另一方面,硅每平方厘米只能包含100个缺陷。显然,这种巨大的缺陷率使得GaN效率低下。虽然制造商近年来取得了长足的进步,但GaN仍在努力满足严格的半导体设计要求。

6.功率半导体市场

与硅相比,目前的制造技术限制了氮化镓和碳化硅的成本效益,使这两种高功率材料在短期内更加昂贵。然而,这两种材料在特定半导体应用中都具有强大的优势。碳化硅在短期内可能是一种更有效的产品,因为它比氮化镓更容易制造更大、更均匀的SiC晶片。随着时间的推移,鉴于其更高的电子迁移率,氮化镓将在小型高频产品中找到自己的位置。碳化硅在较大的功率产品中将更可取,因为它的功率能力比氮化镓更高的导热性。

f0f9d724-73be-11ef-bb4b-92fbcf53809c.png

氮化镓和碳化硅器件,与硅半导体(LDMOS) MOSFET和超级结MOSFET竞争。GaN和SiC器件在某些方面是相似的,但也有很大的差异。

f1224b6e-73be-11ef-bb4b-92fbcf53809c.png

图1.高压、大电流,开关频率的关系,以及主要应用领域。

宽禁带半导体

WBG化合物半导体具有较高的电子迁移率和较高的带隙能量,转化为优于硅的特性。由WBG化合物半导体制成的晶体管具有更高的击穿电压和对高温的耐受性。这些器件在高压和高功率应用中比硅更有优势。f15f6f76-73be-11ef-bb4b-92fbcf53809c.png图2. 双裸片双场效应管(FET)级联电路将GaN晶体管转换为常关断器件,实现了大功率开关电路中的标准增强型工作模式与硅相比,WBG晶体管的开关速度也更快,可在更高的频率下工作。更低的“导通”电阻意味着它们耗散的功率更小,从而提升能效。这种独特的特性组合使这些器件对汽车应用中一些最严苛要求的电路具有吸引力,特别是混合动力和电动车。

GaN和SiC晶体管以应对汽车电气设备的挑战GaN和SiC器件的主要优势:高电压能力,有650 V、900 V和1200 V的器件,碳化硅:更高的1700V.3300V和6500V。更快的开关速度,更高的工作温度。更低导通电阻,功率耗散最小,能效更高。

GaN器件

在开关应用中,通常“关断”的增强型(或E型)器件是首选,这导致了E型GaN器件的发展首先是两个FET器件的级联(图2)。现在,标准的e型GaN器件已问世。它们可以在高达10兆赫频率下进行开关,功率达几十千瓦。

GaN器件被广泛用于无线设备中,作为频率高达100 GHz的功率放大器。一些主要的用例是蜂窝基站功率放大器、卫星发射器和通用射频放大。然而,由于高压(高达1,000 V)、高温和快速开关,它们也被纳入各种开关电源应用,如DC-DC转换器逆变器和电池充电器。

SiC器

SiC晶体管是天然的E型MOSFET。这些器件可在高达1 MHz的频率下进行开关,其电压和电流水平远高于硅MOSFET。最大漏源电压高达约1,800 V,电流能力为100安培。此外,SiC器件的导通电阻比硅MOSFET低得多,因而在所有开关电源应用(SMPS设计)中的能效更高。

SiC器件需要18至20伏的门极电压驱动,导通具有低导通电阻的器件。标准的Si MOSFET只需要不到10伏的门极就能完全导通。此外,SiC器件需要一个-3至-5 V的门极驱动来切换到关断状态。SiC MOSFET在高压、高电流的能力使它们很适合用于汽车电源电路。在许多应用中,IGBT正在被SiC器件取代。SiC器件可在更高的频率下开关,从而减少电感或变压器的尺寸和成本,同时提高能效。此外,SiC可以比GaN处理更大的电流。GaN和SiC器件存在竞争,特别是硅LDMOS MOSFET、超级结MOSFET和IGBT。在许多应用中,正逐渐被GaN和SiC晶体管所取代。

总结GaN与SiC的比较,以下是重点:GaN的开关速度比Si快。SiC工作电压比GaN更高。SiC需要高的门极驱动电压。许多功率电路和器件可用GaN和SiC进行设计而得到改善。最大的受益者之一是汽车电气系统。现代混合动力车和纯电动车含有可使用这些器件的设备。其中一些流行的应用是OBC、DC-DC转换器、电机驱动器和激光雷达(LiDAR)。图3指出了电动车中需要高功率开关晶体管的主要子系统。f2b19a98-73be-11ef-bb4b-92fbcf53809c.png图3. 用于混合动力车和电动车的WBG车载充电器(OBC)。交流输入经过整流、功率因数校正(PFC),然后进行DC-DC转换(一个输出用于给高压电池充电,另一个用于给低压电池充电)。DC-DC转换器。这是个电源电路,将高的电池电压转换为较低的电压,以运行其他电气设备。现在电池的电压范围高达600伏或900伏。DC-DC转换器将其降至48伏或12伏,或同时降至48伏和12伏,用于其他电子元件的运行(图3)。在混合动力电动车和电动车(HEVEVs)中,DC-DC也可用于电池组和逆变器之间的高压总线。车载充电器(OBCs)。插电式HEVEV和EVs包含一个内部电池充电器,可以连接到交流电源上。这样就可以在家里充电,而不需要外部的AC− DC充电器(图4)。主驱电机驱动器。主驱电机是高输出的交流电机,驱动车辆的车轮。驱动器是个逆变器,将电池电压转换为三相交流电,使电机运转。f2e5da9c-73be-11ef-bb4b-92fbcf53809c.png图4. 一个典型的DC-DC转换器用于将高电池电压转换为12伏和/或48伏。高压电桥中使用的IGBT正逐渐被SiC MOSFET所取代。由于GaN和SiC晶体管具有高电压、大电流和快速开关的特点,为汽车电气设计人员提供了灵活和更简单的设计以及卓越的性能。

f364511a-73be-11ef-bb4b-92fbcf53809c.png

晟鹏技术(晟鹏科技研发的耐高温200C高导热绝缘片具有绝缘耐电压、抗撕裂压力、韧性强、超薄等特性,垂直导热系数3.5W和5W,耐击穿电压达到4KV以上,UL-V0阻燃等级使用寿命周期长,满足变频家电(空调冰箱)、汽车电子新能源电池、电力、交通等行业的需求,低热阻高导热氮化硼绝缘片可以快速地把功率器件产生的热量传递到散热器上。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • SiC
    SiC
    +关注

    关注

    29

    文章

    2808

    浏览量

    62610
  • 氮化镓
    +关注

    关注

    59

    文章

    1629

    浏览量

    116308
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1933

    浏览量

    73312
  • 碳化硅
    +关注

    关注

    25

    文章

    2749

    浏览量

    49021
收藏 人收藏

    评论

    相关推荐

    导热绝缘低介电材料 | 氮化硼散热膜

    2.27g/cm3,莫式硬度为2,具有优良的电绝缘性、介电性能、导热性、耐金属熔体腐蚀性、无明显熔点、低热膨胀系数。在0.1MPa的分压下,氮化硼在中性或还原气氛中,能
    的头像 发表于 11-15 01:02 278次阅读
    <b class='flag-5'>高</b><b class='flag-5'>导热</b><b class='flag-5'>高</b><b class='flag-5'>绝缘</b>低介电材料 | <b class='flag-5'>氮化硼</b>散热膜

    Die-cutting converting 精密模切加工|氮化硼散热膜(白石墨烯)

    基于二维氮化硼纳米的复合薄膜,此散热膜具有透电磁波、导热柔性、
    的头像 发表于 10-31 08:04 273次阅读
    Die-cutting converting 精密模切加工|<b class='flag-5'>氮化硼</b>散热膜(白石墨烯)

    日本企业加速氮化半导体生产,力推电动汽车续航升级

    日本公司正积极投入大规模生产氮化GaN)功率半导体器件,旨在提升电动汽车的行驶里程。尽管氮化碳化
    的头像 发表于 10-22 15:10 570次阅读

    绝缘散热材料 | 石墨氮化硼散热膜复合材料

    石墨氮化硼散热膜复合材料是一种结合了石墨氮化硼散热膜各自优异性能的新型复合材料。一、石墨的基本特性石墨
    的头像 发表于 10-05 08:01 278次阅读
    <b class='flag-5'>高</b><b class='flag-5'>绝缘</b>散热材料 | 石墨<b class='flag-5'>片</b><b class='flag-5'>氮化硼</b>散热膜复合材料

    低功耗碳化硅 MOSFET 的发展 | 氮化硼导热绝缘

    一、前言随着电动汽车的发展,汽车功率器件芯片也正在寻求能够有效处理更高工作电压和温度的组件。此时碳化硅MOSFET成为牵引逆变器等电动汽车构建模块的首选技术。基于碳化硅的逆变器可使高达800V
    的头像 发表于 09-24 08:02 367次阅读
    低功耗<b class='flag-5'>碳化硅</b> MOSFET 的发展 | <b class='flag-5'>氮化硼</b><b class='flag-5'>高</b><b class='flag-5'>导热</b><b class='flag-5'>绝缘</b><b class='flag-5'>片</b>

    氮化碳化硅哪个有优势

    氮化GaN)和碳化硅SiC)都是当前半导体材料领域的佼佼者,它们各自具有独特的优势,应用领域也有所不同。以下是对两者优势的比较:
    的头像 发表于 09-02 11:26 1600次阅读

    碳化硅氮化哪种材料更好

    引言 碳化硅SiC)和氮化GaN)是两种具有重要应用前景的第三代半导体材料。它们具有高热导率、
    的头像 发表于 09-02 11:19 990次阅读

    氮化GaN)的最新技术进展

    本文要点氮化是一种晶体半导体,能够承受更高的电压。氮化器件的开关速度更快、热导率更高、导通电阻更低且击穿强度更高。氮化
    的头像 发表于 07-06 08:13 833次阅读
    <b class='flag-5'>氮化</b><b class='flag-5'>镓</b>(<b class='flag-5'>GaN</b>)的最新技术进展

    碳化硅氮化的未来将怎样共存

    在这个电子产品更新换代速度惊人的时代,半导体市场的前景无疑是光明的。新型功率半导体材料,比如碳化硅(SiC)和氮化(GaN),因其独特的优
    的头像 发表于 04-07 11:37 802次阅读
    <b class='flag-5'>碳化硅</b>与<b class='flag-5'>氮化</b><b class='flag-5'>镓</b>的未来将怎样共存

    5G通信散热的VC及绝缘导热透波氮化硼材料

    下,VC等相变传热技术的发展和应用切实决定着通信产品散热可靠性与性能升级空间,具有至关重要的意义。关键字:二维氮化硼材料,5G,绝缘导热均热膜,VC均热板1散热器
    的头像 发表于 04-02 08:09 977次阅读
    5G通信散热的VC及<b class='flag-5'>绝缘</b><b class='flag-5'>导热</b>透波<b class='flag-5'>氮化硼</b>材料

    SIC 碳化硅认识

    1:什么是碳化硅 碳化硅SiC)又叫金刚砂,它是用石英砂、石油焦、木屑、食盐等原料通过电阻炉高温冶炼而成,其实碳化硅很久以前就被发现了,它的特点是:化学性能稳定、
    的头像 发表于 04-01 10:09 1015次阅读
    <b class='flag-5'>SIC</b> <b class='flag-5'>碳化硅</b>认识

    CGHV96050F1卫星通信氮化电子迁移率晶体管CREE

    CGHV96050F1是款碳化硅(SiC)基材上的氮化(GaN)电子迁移率晶体管(HEMT)
    发表于 01-19 09:27

    氮化的发展难题及技术突破盘点

    同为第三代半导体材料,氮化时常被人用来与碳化硅作比较,虽然没有碳化硅发展的时间久,但氮化依旧
    的头像 发表于 01-10 09:53 1979次阅读
    <b class='flag-5'>氮化</b><b class='flag-5'>镓</b>的发展难题及技术突破盘点

    氮化功率器件结构和原理

    氮化功率器件是一种新型的高频功率微波器件,具有广阔的应用前景。本文将详细介绍氮化功率器件的结构和原理。 一、
    的头像 发表于 01-09 18:06 3200次阅读

    氮化半导体和碳化硅半导体的区别

    GaN)半导体: 氮化是一种二元复合半导体(由氮和元素构成),具有较大的禁带宽度(3.4电子伏特)。它是一个具有六方晶系结构的材料,
    的头像 发表于 12-27 14:54 1819次阅读