随着电子技术的发展,芯片的集成度不断提高,电路布线也越来越细。因此,每单位面积的功耗增加,导致发热增加和潜在的设备故障。直接粘合铜(DBC)陶瓷基板因其优异的导热性和导电性而成为重要的电子封装材料,特别是在功率模块(IGBT)和集成电力电子模块中。
直接敷铜陶瓷基板(DBC)由陶瓷基片与铜箔在高温下(1065℃)共晶烧结而成,最后根据布线要求,以刻蚀方式形成线路。由于铜箔具有良好的导电、导热能力,而氧化铝能有效控制 Cu-Al2O3-Cu复合体的膨胀,使DBC基板具有近似氧化铝的热膨胀系数。
DBC陶瓷基板分为3层,中间的绝缘材料是Al2O3或者AlN。Al2O3的热导率通常为24W/(m·K),AlN的热导率则为170W/(m·K)。DBC基板的热膨胀系数与Al2O3/AlN相类似,非常接近LED外延材料的热膨胀系数,可以显著降低芯片与基板间所产生的热应力。
DBC工艺原理:DBC技术主要基于氧化铝陶瓷基板的金属化,由J.F. Burgess和Y.S. Sun于1970年代首次推出。直接铜键合是一种金属化方法,将铜箔直接粘合到陶瓷基板(主要是Al2O3和AlN)的表面上。其基本原理是将氧引入铜与陶瓷的界面中,然后在1065~1083°C下形成Cu/O共晶液相,与陶瓷基体和铜箔反应生成CuAlO2或Cu(AlO2)2,并借助中间相实现铜箔与基板之间的结合。由于AlN是非氧化物陶瓷,因此在其表面沉积铜的关键是形成Al2O3的过渡层,这有助于实现铜箔与陶瓷基板之间的有效结合。DBC热压键合中使用的铜箔一般较厚,范围从100到600μm,并且具有很强的载流能力,使其适用于高温和高电流等极端环境下的器件密封应用。
DBC陶瓷基板的性能:DBC陶瓷基板具有陶瓷特有的高导热性、高电绝缘性、高机械强度、低膨胀的特点。它还结合了无氧铜的高导电性和出色的可焊性,允许蚀刻各种图案。
1.优良的绝缘性能:
使用DBC基板作为芯片载体,有效地将芯片与模块的散热基座隔离开来。DBC基板中的Al2O3陶瓷层或AlN陶瓷层增强了模块的绝缘能力(绝缘电压>2.5KV)。
2.优异的导热性:
DBC基材具有优异的导热性。在IGBT模块的操作中,芯片表面会产生大量的热量。这些热量可以通过DBC基板有效地传递到模块的散热底座,再通过导热硅脂进一步传导到散热器,实现模块整体散热。
3.热膨胀系数与硅相似:
DBC衬底具有与硅(芯片的主要材料)相似的热膨胀系数(7.1ppm / K)。这种相似性可防止应力损坏芯片。DBC基材具有优异的机械性能、耐腐蚀性和最小的变形,适用于广泛的温度应用。
4.良好的机械强度:厚铜箔和高性能陶瓷材料为DBC基板提供了良好的机械强度和可靠性。
5.强大的载流能力:由于铜导体优越的电气性能和高载流能力,DBC基板可以支持高w功率容量。
DBC陶瓷基板的应用:DBC陶瓷基板具有广泛的应用,包括大功率白光LED模块,UV/深UV LED器件封装,激光二极管(LD),汽车传感器,冷冻红外热成像,5G光通信,高端冷却器,聚光光伏(CPV),微波射频器件和电子功率器件(IGBT)等众多领域。虽然出现了像AMB和DBA这样的12345.型陶瓷基板,但这并不意味着它们可以完全取代DBC。每个在功率和成本方面都有自己的应用场景,DBC仍然具有巨大的市场潜力。
晟鹏技术(晟鹏科技)研发的耐高温200C高导热绝缘片具有绝缘耐电压、抗撕裂压力、韧性强、超薄等特性,垂直导热系数3.5W和5W,耐击穿电压达到4KV以上,UL-V0阻燃等级使用寿命周期长,满足变频家电(空调冰箱)、汽车电子、新能源电池、电力、交通等行业的需求,低热阻高导热氮化硼绝缘片可以快速地把功率器件产生的热量传递到散热器上。
-
绝缘
+关注
关注
1文章
427浏览量
21813 -
DBC
+关注
关注
2文章
54浏览量
7753 -
导热
+关注
关注
0文章
301浏览量
12969 -
陶瓷基板
+关注
关注
5文章
206浏览量
11400
发布评论请先 登录
相关推荐
评论