0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

奇异摩尔专用DSA加速解决方案重塑人工智能与高性能计算

奇异摩尔 来源:奇异摩尔 2024-09-19 11:45 次阅读

写在开头,奇异摩尔的 NDSA 互联系列产品基于高性能RoCEv2 RDMA引擎,是面向智算网络通信加速及无损数据传输的专用DSA加速解决方案。

本文部分内容来源于麦肯锡白皮书

随着摩尔定律下的晶体管缩放速度放缓,单纯依靠增加晶体管密度的通用计算的边际效益不断递减,促使专用计算日益多样化,于是,针对特定计算任务的专用架构成为计算创新的焦点。

在过去的几十年的时间里,半导体晶圆上的晶体管密度几乎每两年翻一番,这一趋势令人瞩目。但在过去几年中,晶体管缩放的速度显著放缓,比摩尔定律预测的速度落后了大约十倍。

2018年,著名计算机架构师约翰·亨尼斯西(John Hennessy)和大卫·帕特森(David Patterson)在图灵讲座中指出,半导体工艺创新的放缓将逐渐增加对架构创新的激励——即集成电路的设计方式,以执行计算任务。

“他们认为,通用计算架构(如CPU)固有的低效性将开始被专门针对特定计算任务的架构(也称为领域专用架构,DSAs)的计算能力和成本效益所取代 。”

与此同时,随着计算和数字化在云计算(人工智能和高性能计算)、网络、边缘、物联网(IoT)和自动驾驶等众多应用领域中普及,高度领域专用的计算工作负载正在为DSAs提供有意义的性能优势。大型语言模型(生成式AI的核心引擎),例如ChatGPT,在高容量的AI工作负载中提供了进一步的专业化,这促进了进一步的硬件专业化。 DSA(domain-specific architecture)为特定应用领域开发的硬件和软件的商业潜力是巨大的。专用的图形处理单元 (GPU) 和张量处理单元 (TPU) 已经在数据中心获得了重要的市场份额,它们在 AI 工作负载学习和推理方面的表现优于 CPU。使用GPU和TPU对某些应用的性能提升是非常显著的,特定工作负载的可以实现15 到 50 倍的加速。此外,在汽车领域,来自领先供应商的定制的专用于某些计算场景的DSA硬件也提供了安全支持日益提高的自动驾驶水平所需的低延迟、高性能推理。

wKgaombrnnKAGY13AAKCgBR1DvE660.png

随着 DSA 扩展到其他应用领域,麦肯锡咨询估计到 2026 年,DSA 将占约 900 亿美元的收入(约占全球半导体市场的 10% 至 15%),高于 2022 年的约 400 亿美元。因此,我们看到在这个方向的硬件类的风险投资显着增加也就不足为奇了。

01 算力革命下的高性能网络DSA

随着人工智能及高性能计算的高速发展,服务器集群的瓶颈逐渐从单CPU、GPU、APU的算力转换到硬件间的互联能力。传统的数据中心架构中包含CPU、内存、存储和网络等组件,但CPU目前已经公认不再是运行基础设施功能的最佳位置了。对于下一代数据中心而言,面向网络加速的DSA将扮演重要的角色,根据不同应用场景的需求,加速数据传输。同时,以太网速度从25G增加到100G、200G、400G,再到800G,甚至还有持续增长的趋势,超大规模数据中心的硬件架构在逐渐转变。

据估计,对于超大规模数据中心来说,大约有一半的CPU被用在了非创收型任务上。网络DSA可以承担大部分繁重的工作,将CPU解放出来,专注于创收的应用处理上。同时,由于功能和作用不同,北向网络和高带宽域在设计时侧重点不同。北向网络侧重于网络控制与管理,主要是网络控制器与上层应用之间的接口通信。高带宽域网络侧重于数据传输性能,旨在提供高速度、低延迟的网络连接。基于RoCE的RDMA技术,兼容现有的以太网基础设施,拥抱开放生态,是业界解决高带宽域网络与北向网络数据传输的重要解决方案。

02 Chiplet设计方法与DSA的完美结合

结合Chiplet设计方法学与DSA的设计,可以构建出高效、灵活且高度定制化的计算平台。Chiplet设计方法学通过将处理器设计拆分为多个独立的Chiplet,每个Chiplet可以针对特定功能进行优化。这样可以在设计、制造和测试中提高灵活性。同时,不同的Chiplet分工明确,可以专门处理不同的任务,例如CPU核心、内存控制器、I/O接口等。而DSA针对特定计算任务进行优化,例如生成式人工智能、图形处理、网络处理等,相比于通用处理器,DSA在其特定领域内具有更高的性能和能效比。

通过Chiplet方法学,可以将多个DSA集成到一个系统中,创建一个高度定制化的平台。比如,一个系统可以包含CPU、GPU、TPU、DPU等Chiplet,根据应用需求灵活组合。在这一背景下,组件之间的高速可连接对于确保顺利快速的数据传输至关重要。互联标准、带宽、延迟和低延迟是关键指标。

03奇异摩尔NDSA网络加速与无损数据传输解决方案

在智算中心领域,奇异摩尔 的NDSA互联系列产品复用以太网基础设施,基于高性能RoCEv2 RDMA引擎,面向智算网络通信加速及无损数据传输的专用DSA加速解决方案。

AI原生智能网卡

奇异摩尔的Kiwi NDSA-SNIC AI原生智能网卡针对网络数据传输,基于RoCE V2 RDMA技术,自适应网络调度算法,搭载可编程加速核心SDPU,高达800G传输带宽,实现Tb级万卡集群无损数据传输。

高性能网络加速芯粒

奇异摩尔的高性能网络加速芯粒 – Kiwi NDSA互联芯粒针对高带宽域数据传输,基于RoCEv2 RDMA技术,单芯粒传输带宽高达800G,携带UCIe-D2D芯粒可扩展互联接口,实现集群内TB级的高速通信。

写在最后,无论是在高性能计算领域还是在人工智能领域,我们会预见更多加速数据传输的DSA问世。它们通过提供高吞吐量效率,计算节点之间的超快速互连,或提升人工智能训练的效率,为半导体价值链的参与者及其客户带来更多的革新和挑战。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    456

    文章

    50965

    浏览量

    424841
  • 人工智能
    +关注

    关注

    1792

    文章

    47442

    浏览量

    239004
  • 奇异摩尔
    +关注

    关注

    0

    文章

    49

    浏览量

    3448

原文标题:Kiwi Talks | DSA专用领域芯片正在重塑人工智能与高性能计算

文章出处:【微信号:奇异摩尔,微信公众号:奇异摩尔】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    GIGABYTE CES 2025全方位展示人工智能计算解决方案

    GIGABYTE Technology,作为全球服务器和数据中心解决方案的领先创新企业,再次展现了其在人工智能计算发展领域的卓越实力。在即将到来的CES 2025上,GIGABYTE将全方位展示
    的头像 发表于 01-10 14:16 158次阅读

    鸿蒙原生页面高性能解决方案上线OpenHarmony社区 助力打造高性能原生应用

    随着HarmonyOS NEXT的正式推出,鸿蒙原生应用开发热度高涨,数量激增。但在三方应用鸿蒙化进程中,性能问题频出。为此,HarmonyOS NEXT推出了一整套原生页面高性能解决方案,包括
    发表于 01-02 18:00

    Banana Pi 携手 ArmSoM 推出人工智能加速 RK3576 CM5 计算模块

    的直接替代品。 ArmSoM 在其创建过程中写道:“ArmSoM-CM5 是一款由 Rockchip RK3576 第二代 8nm 高性能 AIOT(人工智能物联网)平台驱动的计算模块。它集成了四核
    发表于 12-11 18:38

    德晟达推出高性能医疗专用AI一体机

    随着AI人工智能技术的飞速发展,医疗行业正迎来一场前所未有的变革,德晟达提供的硬件解决方案,服务客户围绕“AI人工智能+医疗”的行业创新发展方向,深度研发,将AI人工智能诊断技术与
    的头像 发表于 11-26 16:25 326次阅读

    机智云入选广州市“人工智能+”优秀解决方案

    人工智能+”优秀解决方案册。该方案融合了人工智能与物联网技术,旨在显著提升工业生产中的质量检测效率和准确性,助力企业实现智能化转型。
    的头像 发表于 11-19 09:45 224次阅读

    嵌入式和人工智能究竟是什么关系?

    学习和更新提供了可能,从而使人工智能应用能够不断适应和优化。 总的来说,嵌入式系统在人工智能中的作用不容忽视。它不仅为人工智能硬件加速提供了强大的支持,还在边缘
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不仅极大地提高了数据处理
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    满足人工智能图像处理中对于高性能、低功耗和特定功能的需求。 低功耗 : 在人工智能图像处理中,低功耗是一个重要的考量因素。RISC-V架构的设计使其在处理任务时能够保持较低的功耗水平,这对于需要
    发表于 09-28 11:00

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算加速,还可以针对特定应用场景进行定制化
    发表于 07-29 17:05

    人工智能与大模型的关系与区别

    在科技日新月异的今天,人工智能(AI)已成为推动社会进步的重要力量。而在人工智能的众多分支中,大模型(Large Models)作为近年来兴起的概念,以其巨大的参数数量和强大的计算能力,在多个领域展现出了非凡的潜力。本文旨在深入
    的头像 发表于 07-04 16:07 3845次阅读

    奇异摩尔上海总部进驻上海浦东科海大楼

    。 三年风雨兼程  三年春华秋实 奇异摩尔于2021年在上海创立,依托于Chiplet和RDMA高性能网络互联技术,旨在打造了一整套全栈式AI智算集群互联架构及产品解决方案。 过去年的
    的头像 发表于 07-01 18:57 2602次阅读
    <b class='flag-5'>奇异</b><b class='flag-5'>摩尔</b>上海总部进驻上海浦东科海大楼

    人工智能数据中心的新型连接解决方案

    支持新型人工智能数据中心架构的先进连接解决方案不断涌现。高速板对板连接器、下一代电缆、背板和近似集成电路连接器对电缆解决方案的运行速度高达224Gb/s-PAM4,将加速未来
    的头像 发表于 06-13 08:26 583次阅读
    <b class='flag-5'>人工智能</b>数据中心的新型连接<b class='flag-5'>解决方案</b>

    奇异摩尔携手SEMiBAY Talk 邀您畅谈互联与计算

    2024年5月25日(本周六)19:30,由深圳市半导体与集成电路产业联盟(SICA)主办的 SEMiBAY Talk“Chiplet 与先进封装技术和市场趋势”将在线上举行。奇异摩尔产品及解决方案
    的头像 发表于 05-20 18:31 1007次阅读
    <b class='flag-5'>奇异</b><b class='flag-5'>摩尔</b>携手SEMiBAY Talk 邀您畅谈互联与<b class='flag-5'>计算</b>

    摩尔线程携手瑞莱智慧共同打造人工智能、大模型的整体解决方案

    近期,摩尔线程与北京瑞莱智慧科技有限公司(简称:瑞莱智慧)签署战略合作协议,双方将依托各自在人工智能领域的优势与资源,共同打造人工智能、大模型的整体解决方案,共筑安全可控大模型新生态。
    的头像 发表于 04-08 11:32 1039次阅读
    <b class='flag-5'>摩尔</b>线程携手瑞莱智慧共同打造<b class='flag-5'>人工智能</b>、大模型的整体<b class='flag-5'>解决方案</b>

    Cadence与NVIDIA联合推出利用加速计算和生成式AI重塑设计

    中国上海,2024 年 3 月 25 日——楷登电子(美国 Cadence 公司,NASDAQ:CDNS)近日宣布,公司将深化与 NVIDIA 在 EDA、系统设计与分析、数字生物学和人工智能领域的多年合作,推出两款变革性解决方案,利用
    的头像 发表于 03-25 14:36 631次阅读