实事求是而言,不管是燃料电池系统还是锂离子动力电池,发生安全性事故的后果都是极其严重的。但是如果仅仅从系统控制的角度而言,笔者个人认为,燃料电池在安全性影响因素的可控性方面要比锂离子动力电池相对而言更容易控制。
2.1.2 燃料电池的安全性分析
相对于锂离子电池模块,燃料电池系统(PEMFC system)的安全性评价有很大不同。PEMFC的安全性评价主要是针对PEMFC电堆和储氢系统这两个部分,而且都与氢气直接相关。
PEMFC电堆的安全性:PEMFC电堆是很多单电池按照压滤机方式组装起来的,电堆只是氢气和氧气发生电化学反应的场所,它本身并不储存能量,这是跟常规二次电池是很不一样的。PEMFC电堆的安全控制主要有两个方面,一个是电池组的保护,需要在检测到电压和温度异常之后,可以在极短时间内切断氢气和空气的供给,从而避免事故的发生。
另外一方面是氢气的监控,这是主要的安全隐患。Toyota和Daimler-Benz对其FC-EV的综合测试结果表明,即使在工作状态下对电堆进行穿刺短路,都不会引起电堆火灾和爆炸发生,这主要是因为电堆内部氢气的量并不大,而且氢气/空气可以迅速被切断。针对电堆本身来说,氢气的泄漏点主要有两处,一处是在氢气供给接口,另外一处是MEA的层叠间隙处。当前的氢气传感器技术不论是在灵敏度还是可靠性方面都已经非常成熟,可以保证控制系统在极短时间内切断氢气气路,从而避免氢气在动力舱的积累。
储氢系统的安全性:PEMFC系统最大的安全隐患在于储氢罐。目前FC-EV普遍采用的是玻璃纤维/碳纤维增强超高压铝瓶储氢,压力可以高达700 bar。氢气储存量取决于铝瓶的容积和数量,目前几大汽车公司的FC-EV普遍装载5-10Kg的氢气,可以满足450-700Km的续航里程。一般而言,氢气的爆炸体积范围在13-59%。那么就需要分析在何种情况下氢气会泄漏以及泄漏后可能引起的爆炸问题。
对于储氢罐而言,最大的安全隐患是当气瓶在外力作用下发生破损而引发的氢气泄露。电堆自身或与车身金属件之间的碰撞摩擦可能产生火花而引爆泄漏的氢气。因此,如何避免储氢罐不因外力而受到破损,以及破损以后如何避免氢气爆炸,是FC-EV的最关键安全性考核因素。
目前广泛使用的700 bar高压铝瓶,国际上已经有数千次的加压/减压测试记录,应该说在抗应力疲劳方面是过关的,储氢瓶在满载条件甚至下还进行过步枪射击实验。为了避免外力损伤,国际几大汽车公司普遍选择将储氢罐放置在后排座椅下面或者后背这个汽车上相对比较安全的部位。
一般气罐旁边、驾驶室和动力舱都安装了氢气传感器在线检测氢气浓度,储氢罐还安装了应急排放阀,以降低破损以后氢气的积累。一般而言,燃料电池汽车只有在遭受重大交通事故或者应力疲劳导致储氢瓶破损氢气泄漏的情况下,才有可能引发诸如爆炸这样的重大安全问题。通常,氢气泄露积累到爆炸下限浓度需要数秒的时间,在氢气传感器的警报下乘客有一定的逃离时间。氢气的特点是非常轻泄漏之后迅速上升,只要通风良好在开阔的马路上一般不会发生爆炸危险。
笔者这里要指出的是,人们对于氢气的安全性问题存在一定的认识误区。日本研究试验结果表明,在汽油车和氢燃料电池汽车分别创造燃料泄露和着火条件下,3秒时汽油车下方漏油着火,而氢气则是迅速冲高在汽车上方着火。一分半钟以后燃料电池汽车的明火已经熄灭,而汽油车火势正旺最终烧得只剩车架(如上图所示)。
德国BMW、Daimler-Benz和中国汽研中心等国内外很多研究机构也都做过氢燃料电池的碰撞、泡水、跌落实验,储氢罐的碰撞和灼烧试验以及燃料电池汽车整车的碰撞试验,均未出现重大安全问题。但是笔者这里仍然要强调的是,不管是锂电纯电动汽车还是燃料电池汽车,安全性问题的综合评估要在量产的基础上进行大规模的测试和数据采集,才可能有更加深入的认识。
大型锂离子动力电池的BMS安全监控主要是依据电芯温度和电压/电流的变化,从我们上面的讨论可以看到,锂电池内部的热失控都是链式放热产气化学反应,也就是说留给BMS的控制时间极其短暂。而燃料电池系统的安全隐患则来自氢气。本质上来说,PEMFC电堆的安全问题主要是物理过程(氢气泄露与控制),而锂电动力电池则是化学过程(链式反应)。
实事求是而言,不管是燃料电池系统还是锂离子动力电池,发生安全性事故的后果都是极其严重的。但是如果仅仅从系统控制的角度而言,笔者个人认为,燃料电池在安全性影响因素的可控性方面要比锂离子动力电池相对而言更容易控制。
-
燃料电池
+关注
关注
26文章
962浏览量
95256
原文标题:【佳的自动化·JFD专栏】锂电池与燃料电池的安全性对比(下)
文章出处:【微信号:gh_a6b91417f850,微信公众号:高工锂电技术与应用】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论