0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

MEMS的未来 材料将更加实用化

NVQ8_sensors_io 2017-12-06 14:38 次阅读

在国际半导体产业协会(SEMI)看来,微机电系统(MEMS)技术在近几年来的半导体领域中成长最快速,那么如何准确预测MEMS的未来?在了解MEMS组件的历史,并查阅有关MEMS最具创新性的500篇学术论文后,MEMS设计与开发公司A.M. Fitzgerald and Associates LLC创办人Alissa Fitzgerald在今年的MEMS与传感器高峰会议(MEMS & Sensors Executive Congress)发表演说时分享对于MEMS未来发展的乐观看法与预测。

Fitzgerald 认为,“下一个十亿美元的产品就潜藏在大学的研究文献中。”2017年的学术论文中揭示了有关被动式和近零功耗(near-zero)的传感器,以及基于纸类和塑料的方案取代昂贵硅基方案作为消费应用和一次性使用的特殊产品等最新进展。

A.M. Fitzgerald对于MEMS的未来发展成竹在胸,他们致力于将新颖的学术和创业想法应用到小型MEMS晶圆厂中,并使其从中受益,就像使用Soitec的商用硅和绝缘层上覆硅(SOI)晶圆的Rogue Valley Microdevices (RVM)公司一样。

图1:MEMS设计与开发公司A.M. Fitzgerald & Associates创办人Alissa Fitzgerald在SEMI 2017年度MEMS与传感器高峰会议上发表演讲

Fitzgerald在演讲时谈到了MEMS技术的历史渊源,最早可以追溯到1980年代酸蚀刻三维(3D)力传感器的发展,这致使Kurt Petersen发明了基于块状硅微加工技术的压力传感器。该压力传感器最终实现了喷墨喷嘴,并促使数字光处理(DLP) MEMS的出现,很快地也有了第一家厂商使用来自ADI的加速度计触发安全气囊,这比传统的管内球机械绊网式技术更迅速。

“从那时起,博世(Bosch)的深度反应离子刻蚀(DRI)制程开启了一个全新时代,实现了世界上第一个MEMS陀螺仪。薄膜体声波谐振器(FBAR),以及MEMS压电和氮化铝(AlN)薄膜的广泛使用,也催生了我们今天拥有的各种MEMS组件。”

Fitzgerald说,另一个重要的发明是“精确对准的共晶接合(eutectic bonding),使InvenSense能够将自家的ASIC晶圆接合MEMS芯片,以实现自动密封,因而无需额外的封盖步骤。”

图2:RVM创办人Jessica Gomez(右)(为A.M. Fitzgerald的设计进行生产)与Soitec业务发展总监Nazila Pautou(为RVM提供SOI晶圆)交驳光剑

据Fitzgerald表示,早期,ADI和博世等主要企业满足了50%以上的市场需求,其余400家小公司瓜分剩余市场。但随着智能手机的普及,庞大的消费市场已经使这400家小公司成为市场的主要力量。

那么所有这些消费市场的想法来自何处?Fitzgerald认为,在很大程度上可溯源至学术界,他们“在大学实验室培育创意”,作为寻找问题的解决方案。A.M. Fitzgerald等机构将学者们的想法落实于设计中,并发展成适于销售的产品,为当今全球兆级美元的消费市场提供动能。

图3:在RVM晶圆厂中,工程师正在检测MEMS晶圆;该晶圆是A.M. Fitzgerald采用Soitec的SOI技术设计的

展望未来、然后深耕细作,找出大学实验室正在育成中的技术。Fitzgerald在演讲中表示,“经查阅2017年500篇名列前茅的论文后,我们对其进行了商业可行性筛选,预计有些技术将会改变全球的游戏规则。”

未来的MEMS——纸还是塑料?

根据Fitzgerald的说法,第一批将改写游戏规则的技术将会来自是FBAR和声表面波(SAW)传感器的新用途。

目前,FBAR和SAW技术主要用于射频(RF)滤波器。Fitzgerald说:“根据文献数据显示,它们也可用于生产无需电池的被动式传感器;这种无需电池的传感器在达到某个特定参数时,仍然能够唤醒处理器。”此外,这种传感器还能提供高度精确的极端温度检测,也能在压力极限下发挥作用,甚至可以检测特定气体。

她说:“这些被动传感器非常适合恶劣环境,在这种环境下,你无法或不能更换电池;而且它们还具有提供零待机功耗的高性能。”

进一步研究2017年的MEMS文献后,她还发现了近零功耗组件,有时也被称为“事件驱动型”传感器。它们类似于被动组件,但使用非常小的μA级电流,在待机模式下功耗小于1pW。当它们感知到特定事件发生时,就会自行唤醒并触发应用处理器。

图4:A.M. Fitzgerald和其它MEMS芯片设计者可以使用基于纯硅或SOI的8、6、4、3或甚至2吋晶圆(由右至左)

Fitzgerald举例说:“美国东北大学(Northeastern University)已经证明,近零功耗的红外线(IR)传感器可以实现对于波长敏感的功能,还可以唤醒物联网(IoT)设备或安全监控器中的处理器。即使是应用于大型数组中,它们仍然可以使用小型能量采集技术作为备用电源。”

当今许多新型MEMS组件使用压电材料,不仅仅用于能量采集,而且还能实现宽音域(wide-range)微型扬声器、磁力计,甚至变压器等应用,而这些应用都不需要授权高效率但昂贵的DRI制程。

图5:在RVM位于美国奥勒岗州的晶圆厂进行MEMS晶圆批处理

Fitzgerald说:“对于低廉的设备和物联网来说,消费市场业已成熟,因为它可以透过大规模量产实现一次性使用。”

同时,MEMS研究人员正致力于探索替代昂贵硅晶的方法。Fitzgerald表示,在2004年,全世界有90%的MEMS组件采用块状硅或硅基板的表面制造;但在文献描述的下一代组件中,有一半是塑料或甚至是纸基板。

她说:“基于纸类的技术正日益取代耗资数十亿美元的昂贵硅晶圆厂,特别是针对仅使用一次的抛弃式应用,通常只需要价格不到1美分的传感器。”基于塑料或纸基板的组件不像硅基组件那样快速或精确,但其性能足以满足短暂使用或经常更换的消费产品,以及一次性的抛弃式应用需求。

例如,纸传感器可用于检测特定类型的细菌。这些组件能够减少对于各种抗生素的需求,特别是因为许多抗生素可能促使超级细菌进化。同样地,纸质的食品包装可以嵌入纸基组件中,告知消费者食品实际上是否已经变质,以取代当今不够精确的“有效期限”戳章。

图6:RVM生产的最终MEMS芯片(此处为20个样品),已准备好供应客户

Fitzgerald说:“预计在2020年以后,人们将会看到一系列压电事件驱动的新型传感器;而到了2030年,我们将会看到纸类和塑料传感器的大幅成长。”

她说,内建读数的CMOS+传感器设计仍然需要采用硅。但是,“随着对于硅晶技术的研究趋缓,转而青睐更便宜的纸类组件,硅晶技术存在停滞不前的风险。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • mems
    +关注

    关注

    129

    文章

    3891

    浏览量

    190282
  • SAW
    SAW
    +关注

    关注

    11

    文章

    145

    浏览量

    27137
  • FBAR
    +关注

    关注

    6

    文章

    46

    浏览量

    17607

原文标题:硅晶太贵,未来MEMS的材料都是纸和塑料

文章出处:【微信号:sensors-iot,微信公众号:sensors-iot】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    变阻器的未来发展趋势和前景如何?是否有替代品出现?

    变阻器是一种用于调节电路中电阻值的电子元件,广泛应用于各种电子设备和系统中。随着科技的不断进步和应用领域的扩展,变阻器的未来发展趋势和前景备受关注。 未来变阻器趋向于智能和多功能
    发表于 10-10 14:35

    嵌入式系统的未来趋势有哪些?

    ,会更多地使用环保材料,以减少对环境的污染。同时,系统设计更加注重生态可持续性,满足可持续发展的需求。 6. 实时操作系统(RTOS)的发展 实时操作系统在嵌入式系统中发挥关键作用。未来
    发表于 09-12 15:42

    玻色量子加速实用化量子计算应用

    日前,由北京理工大学管理学院主办、中国运筹学会数据科学与运筹智能分会科研与学术交流中心管理工程系承办的明理讲堂线上直播活动成功举办。玻色量子副总裁巨江伟发表了以“实用化量子计算”为主题的精彩报告。
    的头像 发表于 09-03 10:36 413次阅读

    Aigtek功率放大器如何驱动MEMS微电机系统

    MEMS技术是当今最炙手可热的传感器制造技术,也是传感器小型、智能、低能耗的重要推动力,MEMS技术促进了传感器的极大发展,如果没有MEMS
    的头像 发表于 08-29 11:00 192次阅读
    Aigtek功率放大器如何驱动<b class='flag-5'>MEMS</b>微电机系统

    突破性能瓶颈!MEMS关键器件材料创新

    【研究背景】 在微电子机械系统(MEMS)领域,随着科技进步和应用需求的增加,对于传统MEMS材料(如硅或氮化硅)的力敏感性(FS)和信噪比的限制引起了研究人员的关注。这些材料在应用中
    的头像 发表于 07-26 17:52 640次阅读
    突破性能瓶颈!<b class='flag-5'>MEMS</b>关键器件<b class='flag-5'>材料</b>创新

    探秘MEMS封装中的封帽“黑科技”

    重点探讨MEMS封装中的封帽工艺技术,包括封帽材料选择、制备工艺、封装结构设计以及封帽过程中的关键技术问题。
    的头像 发表于 07-08 09:50 623次阅读
    探秘<b class='flag-5'>MEMS</b>封装中的封帽“黑科技”

    60+图片,10大MEMS传感器原理全解析!网上很难找到!

    MEMS技术是当今最炙手可热的传感器制造技术,也是传感器小型、智能、低能耗的重要推动力,MEMS技术促进了传感器的极大发展, 如果没有MEMS
    的头像 发表于 06-23 15:37 2309次阅读
    60+图片,10大<b class='flag-5'>MEMS</b>传感器原理全解析!网上很难找到!

    日本加大车载尖端半导体研发补贴,力图2030年实现实用化

    此举旨在推动自动驾驶以及其他高速度数据处理所需的半导体领域的技术进步,以期能在2030年后实现实用化。同时,政府也希望通过加速尖端产品的研发,提升日本整体产业的竞争实力。
    的头像 发表于 04-01 09:53 342次阅读

    比亚迪匈牙利工厂落地,未来产品欧洲本地

    比亚迪董事长兼总裁王传福则强调,未来公司计划利用本地资源加快开发具有欧洲特色的品牌产品。他表示充分发挥比亚迪作为全球顶尖新能源汽车制造商的优势,推动匈牙利实现汽车行业的电动转型。
    的头像 发表于 02-01 14:05 734次阅读

    智能未来:NFC技术助力数字社区

    NFC技术为数字社区的智能未来提供支持,广泛应用于出入管理、信息传递和智能家居等领域。数字社区因NFC技术的创新而更加智能、便捷和可持续发展。
    的头像 发表于 01-19 14:40 446次阅读

    阻碍智能传感器发展的主要原因!50%的问题都出在这里!什么是MEMS封装?(附58家头部企业名单)

    技术推广的最重要原因之一。     因此,封装是MEMS研发过程的重要环节,封装决定了MEMS 器件的可靠性以及成本,同时,封装决定了MEMS传感器的最终大小,是MEMS传感器小型
    的头像 发表于 01-15 18:27 708次阅读
    阻碍智能传感器发展的主要原因!50%的问题都出在这里!什么是<b class='flag-5'>MEMS</b>封装?(附58家头部企业名单)

    MEMS是替代传统传感器的唯一选择!(趋势探索)

    广阔的应用前景。 作者认为未来MEMS向三大趋势发展:MEMS 封装将会向标准演进;SIP系统级的高度集成化是主要承载形式;
    的头像 发表于 12-19 17:40 438次阅读
    <b class='flag-5'>MEMS</b>是替代传统传感器的唯一选择!(趋势探索)

    MEMS是替代传统传感器的唯一选择!(趋势探索)

    广阔的应用前景。 作者认为未来MEMS向三大趋势发展:MEMS 封装将会向标准演进;SIP系统级的高度集成化是主要承载形式;
    的头像 发表于 12-13 10:51 639次阅读
    <b class='flag-5'>MEMS</b>是替代传统传感器的唯一选择!(趋势探索)

    改变我们生活的锂离子电池 | 第四讲:什么是全固态电池?实用化的可能性有多大?

    改变我们生活的锂离子电池 | 第四讲:什么是全固态电池?实用化的可能性有多大?
    的头像 发表于 12-05 16:59 982次阅读
    改变我们生活的锂离子电池 | 第四讲:什么是全固态电池?<b class='flag-5'>实用化</b>的可能性有多大?

    相约2023 MWS China,预见MEMS产业未来挑战与机遇

    12月1日,2023MWSChina将在上海嘉定喜来登酒店召开。本次峰会吸引了数百位来全球的半导体领先厂商及产业链领袖代表参与,他们分享MEMS行业的前沿技术,深入探讨未来发展趋势,推动行业创新
    的头像 发表于 11-30 08:27 445次阅读
    相约2023 MWS China,预见<b class='flag-5'>MEMS</b>产业<b class='flag-5'>未来</b>挑战与机遇