0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能预处理建构模块加速大数据机器学习算法案例解读

NJ90_gh_bee81f8 2017-12-06 16:30 次阅读

IBM苏黎世实验室(IBM Zurich)的研究人员开发出通用的人工智能(AI)预处理建构模块,据称可较现有方法加速大数据(Big Data)机器学习算法至少10倍以上。

在日前于美国加州长滩举行的神经信息处理系统大会(NIPS 2017)上,IBM在发表这种新途径时解释,它采用了数学对偶性(duality),在Big Data串流中精心挑选能发挥效用的项目,并略过其余无效的选项。

IBM Zurich研究人员Celestine Dünner说:“我们的动机在于,当缺少足够的内存来为Big Data机器学习保存所有的数据时,如何使用硬件加速器,如绘图处理器(GPU)和现场可编程数组(FPGA)。”Celestine Dünner同时也是这一算法的共同发明人。

IBM Zurich数学家Thomas Parnell则表示:“我们应该算是最先提供了可加速10倍的通用解决方案。特别是针对传统的线性机器学习模型(目前广泛用于规模太大而无法用于神经网络进行训练的数据集),我们在最佳参考方案的基础上建置相关技术,并展示了至少10倍的加速方案。”

IBM苏黎世研究人员Thomas Parnell和Celestine Dünner讨论在NIPS 2017发表的预处理算法。

在一开始的展示中,研究人员使用Nvidia Quadro M4000 GPU搭配8GB内存,在容量约30GB的4万张照片数据集上进行训练——该照片数据集采用支持向量机器(SVM)的算法,先将影像解析为各种类别以进行辨识。SVM算法还可为所学习的模型建立几何式解读,这和无法证实其结论的神经网络是不一样的。IBM的数据预处理方法让该算法可在不到1分钟的时间完成执行,比目前采用有限内存训练的方法更快10倍。

该技术的关键在于对每个数据点进行预处理,查看它是不是已经处理数据点的数学对偶。如果是的话,那么算法就会自动略过,这个过程在数据集进行处理时变得越来越频繁出现。Dünner说:“我们在每个数据点以进行处理以前,我们先计算每个数据点的重要性,再以测量对偶差距大小的方式进行处理。”

Parnell说,“如果你的问题适于放在加速器的内存空间,那么在内存内部执行将会获得更好的结果。因此,我们的结果只适用于Big Data的问题。它不仅能让运行时间加快10倍以上,而且如果在云端执行时,也不必付出太多的成本。”

随着Big Data数据集越滚越大,这种节省时间和成本的预处理算法将会变得越来越重要。IBM指出,为了显示其基于对偶性的算法能够处理任意大小的数据集,该公司在NIPS上展示了8GPU的版本,它能处理网页广告的十亿次点击数据。

研究人员正进一步开发该算法,期望在不久部署于IBM BlueMix Cloud——称为基于对偶差距(duality-gap)的异质学习,适用于包括社群媒体、在线营销、目标式广告、查找电信数据模式以及欺诈检测等Big Data数据集。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IBM
    IBM
    +关注

    关注

    3

    文章

    1758

    浏览量

    74726
  • 人工智能
    +关注

    关注

    1792

    文章

    47373

    浏览量

    238861
  • SVM
    SVM
    +关注

    关注

    0

    文章

    154

    浏览量

    32493

原文标题:这是一个让基于GPU的AI训练加速10倍的神奇算法

文章出处:【微信号:gh_bee81f890fc1,微信公众号:面包板社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【「具身智能机器人系统」阅读体验】+数据在具身人工智能中的价值

    嵌入式人工智能(EAI)将人工智能集成到机器人等物理实体中,使它们能够感知、学习环境并与之动态交互。这种能力使此类机器人能够在人类社会中有效
    发表于 12-24 00:33

    人工智能推理及神经处理的未来

    人工智能行业所围绕的是一个受技术进步、社会需求和监管政策影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步,加速
    的头像 发表于 12-23 11:18 256次阅读
    <b class='flag-5'>人工智能</b>推理及神经<b class='flag-5'>处理</b>的未来

    NPU与机器学习算法的关系

    人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和
    的头像 发表于 11-15 09:19 496次阅读

    嵌入式和人工智能究竟是什么关系?

    人工智能的结合,无疑是科技发展中的一场革命。在人工智能硬件加速中,嵌入式系统以其独特的优势和重要性,发挥着不可或缺的作用。通过深度学习和神经网络等
    发表于 11-14 16:39

    人工智能机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法
    发表于 10-24 17:22 2504次阅读
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用和智能
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着
    发表于 09-28 11:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速
    发表于 07-29 17:05

    机器学习中的数据预处理与特征工程

    机器学习的整个流程中,数据预处理与特征工程是两个至关重要的步骤。它们直接决定了模型的输入质量,进而影响模型的训练效果和泛化能力。本文将从数据
    的头像 发表于 07-09 15:57 461次阅读

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的
    的头像 发表于 07-02 11:25 1117次阅读

    机器学习怎么进入人工智能

    人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习
    的头像 发表于 04-04 08:41 342次阅读

    科达嘉电感器在大数据人工智能领域被广泛应用

    近年来,大数据人工智能成为科技领域的热门话题。大数据人工智能提供了大量的数据作为输入,使得人工智能算
    的头像 发表于 02-29 13:56 489次阅读

    嵌入式人工智能的就业方向有哪些?

    联网ARM开发 NB-IoT开发及实战 七:python工程师,人工智能工程师 python语法基础 python核心编程 基于OpenCV的机器视觉开发 嵌入式人工智能渗入生活的方方面面,广泛应用
    发表于 02-26 10:17

    科达嘉电感器广泛应用于大数据人工智能领域为AI赋能

    近年来,大数据人工智能成为科技领域的热门话题。大数据人工智能提供了大量的数据作为输入,使得人工智能算
    的头像 发表于 02-23 17:29 848次阅读